- Chen, H. (2015). Fix-and-optimize and variable neighborhood search approaches for multi-level capacitated lot sizing problems. Omega, 56, 25-36.
- Harris, F. W. (1990). How many parts to make at once? Operations Research, 947-950.
- Rogers, J. (1958). A computational approach to the economic lot scheduling problem. Management Science, 4(3), 264-291.
- Wagner, H. M. and T. M. Whitin (1958)., “Dynamic version of the economic lot size model”, Management Science 5, 1, 89-96.
- Aloulou MA, Dolgui A, Kovalyov MY (2014) A bibliography of non-deterministic lot-sizing models. Int J Prod Res 52:2293–2310.
- Drexl A, Kimms A (1997) Lot sizing and scheduling: survey and extensions. Eur J Oper Res 99:221–235.
- Karimi B, Fatemi Ghomi SMT, W ilson JM (2003). The capacitated lot sizing problem: a review of models and algorithms. Omega; 31:365–78.
- van Norden, L., & van de Velde, S. (2005). Multi-product lot-sizing with a transportation capacity reservation contract. European Journal of Operational Research, 165(1), 127-138.
- Tempelmeier, H. (2011). A column generation heuristic for dynamic capacitated lot sizing with random demand under a fill rate constraint. Omega, 39(6), 627-633.Helber, S., & Sahling, F. (2010). A fix-and-optimize approach for the multi-level capacitated lot sizing problem. International Journal of Production Economics, 123(2), 247-256.
- Pochet, Y., & Wolsey, L. A. (2006). Production planning by mixed integer programming. Springer Science & Business Media.
- Tempelmeier, H., & Hilger, T. (2015). Linear programming models for a stochastic dynamic capacitated lot sizing problem. Computers & Operations Research, 59, 119-125.
- Brahimi, N., Dauzere-Peres, S., Najid, N. M., & Nordli, A. (2006). Single item lot sizing problems. European Journal of Operational Research, 168(1), 1-16.
- Jans, R., & Degraeve, Z. (2008). Modeling industrial lot sizing problems: a review. International Journal of Production Research, 46(6), 1619-1643.
- Jans, R.; Degraeve, Z. (2007). Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches. European Journal of Operational Research, 177 (3), 1855- 1875.
- Buschk¨uhl, L., F. Sahling, S. Helber and H. Tempelmeier (2010). “Dynamic capacitated lot-sizing problems: a classification and review of solution approach”, OR Spectrum 32, 2, 231– 261.
- Florian, M., J. K. Lenstra and A. Rinno oy Kan (1980). “Deterministic production planning: Algorithms and complexity”, Management Science 26, 7, 669–679.
- Trigeiro WW (1989) A simple heuristic for lot sizing with setup times. Decis Sci 20:294–303.
- Garey M, Johnson D (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, New York.
- Sox C, Jackson P, Bowman A, Muckstadt J. (1999). A review of the stochastic lot scheduling problem. Int J Prod Econ; 62:181–200.
- Winands E, Adan I, van Houtum G. The stochastic economic lot scheduling problem: a survey. Eur J Oper Res 2011; 210:1 –9.
- Tempelmeier, H. (2013). Stochastic lot sizing problems. In Handbook of Stochastic Models and Analysis of Manufacturing System Operations (pp. 313-344). Springer New York.
- Raa, B. & Aghezzaf, E. J (2005). A robust dynamic planning strategy for lot-sizing problems with stochastic demands, Intell Manuf16: 207. doi:10.1007/s10845-004-5889-3.
- Brandimarte P. (2006). Multi-item capacitated lot-sizing with demand uncertainty. Int J Prod Res;44(15):2997–3022.
- Sox C, Muckstadt J. (1997). Optimization-based planning for the stochastic lot scheduling problem. IIE Trans;29(5):349–57.
- Martel A, Diaby M, Boctor F. (1995). Multiple items procurement under stochastic nonstationary demands. European Journal of Operational Research;87(1):74–92.
- Tempelmeier, H., & Herpers, S. (2011). Dynamic uncapacitated lot sizing with random demand under a fillrate constraint. European Journal of Operational Research, 212(3), 497-507.
- Bookbinder, J. and J.-Y. Tan (1988). Strategies for the probabilistic lot-sizing problem with service-level constraints. Management Science 34, 1096–1108.
- Tempelmeier, H. (2007). On the stochastic uncapacitated dynamic single-item lot sizing problem with service level constraints. European Journal of Operational Research, 181(1), 184-194.
- Vargas, V. (2009). An optimal solution for the stochastic version of the WagnerWhitin dynamic lot-size model. European Journal of Operational Research 198,447–451.
- Tarim, S. A., & Kingsman, B. G. (2006). Modeling and computing (R n, S n) policies for inventory systems with non-stationary stochastic demand. European Journal of Operational Research, 174(1), 581-599.
- Tunc, H., O. Kilic, S. A. Tarim, and B. Eksioglu (2011). The cost of using stationary inventory policies when demand is non-stationary. Omega 39, 410–415.
- Rossi, R., Kilic, O. A., & Tarim, S. A. (2015). Piecewise linear approximations for the static–dynamic uncertainty strategy in stochastic lot-sizing. Omega, 50, 126-140.
- Helber S, Sahling F, Schimmelpfeng K. Dynamic capacitated lot sizing with random demand and dynamic safety stocks. OR Spectrum 2013;35(1):75 –105.
- فخرزاد، محمدباقر؛ و علینژاد، اسماعیل، (1392). «برنامهریزی و زمانبندی پیشرفته با درنظر گرفتن اثر یادگیری در سیستمهای ساخت کارگاهی انعطافپذیر». نشریه پژوهشهای مهندسی صنایع در سیستمهای تولید، 1(1): 13-24. https://ier.basu.ac.ir/article_493_1.html
- مختاری, قاسم, و ابوالفتحی, مینا. (1399). زمانبندی تولید کارگاهی انعطافپذیر با منابع دوگانهی محدود و اهداف لکزیکوگراف. نشریه پژوهش های مهندسی صنایع در سیستم های تولید, 8(17): 295-309. doi: 10.22084/ier.2021.22227.1978
- Hilger, T. J. (2015). Stochastic Dynamic Lot-Sizing in Supply Chains. BoD–Books on Demand.
- Haase K (1994) Lotsizing and scheduling for production planning. Lecture notes in economics and mathematical systems, vol 408. Springer, Berlin.
- Suerie C, Stadtler H. The capacitated lot-sizing problem with linked lot sizes. Manag Sci 2003; 49:1039–54.
- Swenseth, S.R., Godfrey, M.R., 2002. Incorporating transportation costs into inventory replenishment decisions. International Journal of Production Economics 77, 113–130.
- Tersine, R.J., Barman, S., 1991. Lot size optimization with quantity and freight rate discounts. Logistics and Transportation Review 27(4), 319–332.
- Carter, J.R., Ferrin, B.G., 1996. Transportation costs and inventory management: Why transportation costs matter. Production and Inventory Management Journal 37 (3), 58–62.
- Burwell, T.H., Dave, D.S., Fitzpatrick, K.E., Roy, M.R., 1997. Economic lot size model for price dependent demand under quantity and freight discounts. International Journal of Production Economics 48, 141–155.
- Bertazzi, L., Speranza, M.G., 1999. Models and algorithms for the minimization of inventory and transportation costs: A survey. In: Speranza, M.G., St€ahly, P. (Eds.), New Trends in Distribution Logistics. Springer.
- Vroblefski, M., Ramesh, R., Zionts, S., 2000. Efficient lot-sizing under a differential transportation cost structure for serially distributed ware-houses. European Journal of Operational Research 127, 574–593.
- Maes, J., & Van Wassenhove, L. N. (1986). A simple heuristic for the multi-item single-level capacitated lotsizing problem. Operations research letters, 4(6), 265-273.
- De Smet, N., Minner, S., Aghezzaf, E. H., & Desmet, B. (2020). A linearisation approach to the stochastic dynamic capacitated lotsizing problem with sequence-dependent changeovers. International Journal of Production Research, 58(16), 4980-5005.
- Tavaghof-Gigloo, D., & Minner, S. (2021). Planning approaches for stochastic capacitated lot-sizing with service level constraints. International Journal of Production Research, 59(17), 5087-5107.
- Mohammadi, M. (2020). Designing an integrated reliable model for stochastic lot-sizing and scheduling problem in hazardous materials supply chain under disruption and demand uncertainty. Journal of Cleaner Production, 274, 122621.
- Tirkolaee, E.B., Mardani, A., Dashtian, Z., Soltani, M., Weber, G.W., 2020. A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design. Clean. Prod. 250, 119517.
- Gholizadeh, H., Fazlollahtabar, H., Khalilzadeh, M., 2020. A robust fuzzy stochastic programming for sustainable procurement and logistics under hybrid uncertainty using big data. J. Clean. Prod. 258, 120640.
- Hasan, R. B. (2023). Improvement to an existing multi-level capacitated lot sizing problem with setup carryover, backlogging, and emission control(Doctoral dissertation, University of Windsor (Canada)).
- Marco A. Duran and Ignacio E. Grossmann. An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Mathematical Programming, 36(3):307–339, 1986.
- Roger Fletcher and Sven Leyffer. Solving mixed integer nonlinear programs by outer approximation. Mathematical Programming, 66(1-3):327–349, 1994.
- Ignacio Quesada and Ignacio E. Grossmann. An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Computers & Chemical Engineering, 16(10-11):937–947, 1992.
- Bonami, A. Wächter, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird, J. Lee, A. Lodi, F. Margot, and N. W. Sawaya. An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optimization, 5(2):186–204, 2008.
- Abhishek, S. Leyffer, and J. T. Linderoth. FilMINT: An outer-approximation-based solver for nonlinear mixed integer programs. INFORMS Journal on Computing, 22(4):555–567, 2010.
- Bonami, G. Cornuéjols, A. Lodi, and F. Margot. A feasibility pump for mixed integer nonlinear programs. Mathematical Programming, 119(2):331–352, 2009.
|