- Choi, T. M., Wen, X., Sun, X., & Chung, S. H. (2019). The mean-variance approach for global supply chain risk analysis with air logistics in the blockchain technology era. Transportation Research Part E: Logistics and Transportation Review, 127, 178-191.
- Hosseini, S., Ivanov, D., & Dolgui, A. (2019). Review of quantitative methods for supply chain resilience analysis. Transportation Research Part E: Logistics and Transportation Review, 125, 285-307.
- Ivanov, D., Dolgui, A., & Sokolov, B. (Eds.). (2019). Handbook of ripple effects in the supply chain (Vol. 276). New York: Springer.
- Dolgui, A., Ivanov, D., & Rozhkov, M. (2020). Does the ripple effect influence the bullwhip effect? An integrated analysis of structural and operational dynamics in the supply chain. International Journal of Production Research, 58(5), 1285-1301.
- Li, Y., & Zobel, C. W. (2020). Exploring supply chain network resilience in the presence of the ripple effect. International Journal of Production Economics, 107693.
- Araz, O. M., Choi, T. M., Olson, D., & Salman, F. S. (2020). Data analytics for operational risk management. Decision Sciences.
- شاوردی، مرضیه. (1395). طراحی و مدیریت زنجیره عرضه. موسسه انتشارات علمی دانشگاه صنعتی شریف، تهران، چاپ دوم، شهریور 1395.
- Aday, S., & Aday, M. S. (2020). Impact of COVID-19 on the food supply chain. Food Quality and Safety, 4(4), 167-180.
- Guan, D., Wang, D., Hallegatte, S., Davis, S. J., Huo, J., Li, S., ... & Gong, P. (2020). Global supply-chain effects of COVID-19 control measures. Nature human behaviour, 4(6), 577-587.
- Abdolazimi, O., Esfandarani, M. S., Salehi, M., & Shishebori, D. (2020a). Robust design of a multi-objective closed-loop supply chain by integrating on-time delivery, cost, and environmental aspects, case study of a Tire Factory. Journal of Cleaner Production, 121566.
- Fleischmann, M., Beullens, P., BLOEMHOF‐RUWAARD, J. M., & Van Wassenhove, L. N. (2001). The impact of product recovery on logistics network design. Production and operations management, 10(2), 156-173.
- Pishvaee, M. S., Rabbani, M., & Torabi, S. A. (2011). A robust optimization approach to closed-loop supply chain network design under uncertainty. Applied mathematical modelling, 35(2), 637-649.
- Qiang, Q., Ke, K., Anderson, T., & Dong, J. (2013). The closed-loop supply chain network with competition, distribution channel investment, and uncertainties. Omega, 41(2), 186-194.
- Vahdani, B., Tavakkoli-Moghaddam, R., Modarres, M., & Baboli, A. (2012). Reliable design of a forward/reverse logistics network under uncertainty: a robust-M/M/c queuing model. Transportation Research Part E: Logistics and Transportation Review, 48(6), 1152-1168.
- Amin, S. H., & Zhang, G. (2013). A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return. Applied Mathematical Modelling, 37(6), 4165-4176.
- Papen, P., & Amin, S. H. (2019). Network configuration of a bottled water closed-loop supply chain with green supplier selection. Journal of Remanufacturing, 9(2), 109-127.
- Govindan, K., & Popiuc, M. N. (2014). Reverse supply chain coordination by revenue sharing contract: A case for the personal computers industry. European Journal of Operational Research, 233(2), 326-336.
- Cardoso, S. R., Barbosa-Póvoa, A. P. F., & Relvas, S. (2013). Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty. European journal of operational research, 226(3), 436-451.
- Chakraborty, T., Chauhan, S. S., & Ouhimmou, M. (2020). Mitigating supply disruption with a backup supplier under uncertain demand: competition vs. cooperation. International Journal of Production Research, 58(12), 3618-3649.
- Leonard, D. 2005. “The Only Lifeline Was the Wal-Mart.” Fortune Magazine, October 3. http://archive.fortune.com/magazines/fortune/ fortune_archive/2005/10/03/8356743/index.htm/.
- Reuters Staff. 2016. “Toyota Resumes Production at Japan Plants After Steel Shortage.” Reuters, February 14. https://www.reuters.com/ article/autos-toyota-production-idUSL3N15U0J3/.
- Chopra, S., Reinhardt, G., & Mohan, U. (2007). The importance of decoupling recurrent and disruption risks in a supply chain. Naval Research Logistics (NRL), 54(5), 544-555.
- Chen, K., & Yang, L. (2014). Random yield and coordination mechanisms of a supply chain with emergency backup sourcing. International Journal of Production Research, 52(16), 4747-4767.
- Giri, B. C., & Dey, S. (2020). Game theoretic models for a closed-loop supply chain with stochastic demand and backup supplier under dual channel recycling. Decision Making: Applications in Management and Engineering, 3(1), 108-125.
- Zeng, N., Zeng, D., Liu, A., & Jin, L. (2020). Drop-Shipping and Backup-Sourcing Strategies Under the Risk of Supply Disruption. IEEE Access, 8, 169496-169515.
- Janatyan, N., Zandieh, M., Alem Tabriz, A., & Rabieh, M. (2019). Optimizing Sustainable Pharmaceutical Distribution Network Model with Evolutionary Multi-objective Algorithms (Case Study: Darupakhsh Company). Journal of Production and Operations Management, 10(1), 133-153.
- Ahmadi, A., Mousazadeh, M., Torabi, S. A., & Pishvaee, M. S. (2018). Or applications in pharmaceutical supply chain management. In Operations research applications in health care management (pp. 461-491). Springer, Cham.
- سلیمی زاویه، سید قاسم. (1399). راهبردهای پاسخ به بحران در زمان بحران کرونا ویروس (کووید 19) در بخش تولید و صنعت. فصلنامه توسعه تکنولوژی صنعتی، شماره 39، بهار 1399، صفحه 76-63.
- Wenzel, M., Stanske, S., & Lieberman, M. B. (2020). Strategic responses to crisis. Strategic Management Journal, 41(7/18).
- Dubey, R., Gunasekaran, A., & Papadopoulos, T. (2019). Disaster relief operations: past, present and future. Annals of Operations Research, 283(1-2), 1-8.
- Farahani, R. Z., Lotfi, M. M., Baghaian, A., Ruiz, R., & Rezapour, S. (2020). Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations. European Journal of Operational Research.
- Johanis, D. (2007). How Toronto Pearson International Airport applied lessons from SARS to develop a pandemic response plan. Journal of Business Continuity & Emergency Planning, 1(4), 356-368.
- Chou, J., Kuo, N. F., & Peng, S. L. (2004). Potential impacts of the SARS outbreak on Taiwan's economy. Asian Economic Papers, 3(1), 84-99.
- Calnan, M., Gadsby, E. W., Kondé, M. K., Diallo, A., & Rossman, J. S. (2018). The response to and impact of the Ebola epidemic: towards an agenda for interdisciplinary research. International journal of health policy and management, 7(5), 402.
- Bild, 2020. https://www.bild.de/news/inland/news-inland/coronavirus-rki-erklaert-ganz-italien-zum-sperrgebiet-weltweit-nehmen-faelle-zu-69089326.bild.html, accessed on March 10, 2020.
- Apple, 2020. Investor update on quarterly guidance [February 17, 2020], accessed on March 11, 2020.
- Retaildive, 2020. https://www.retaildive.com/news/the-impact-of-the-coronavirus-on-retail/573522/, accessed on March 10, 2020.
- (2020). WHO announces COVID-19 outbreak a pandemic. https://www.euro.who.int/en/health-topics/health emergencies/coronavirus-covid-19/news/news/2020/3/who announces-covid-19-outbreak-a-pandemic. Accessed December 1, 2020.
- Nunes, L. J. R., Causer, T. P., & Ciolkosz, D. (2020). Biomass for energy: A review on supply chain management models. Renewable and Sustainable Energy Reviews, 120, 109658.
- Vafaei, A., Yaghoubi, S., Tajik, J., & Barzinpour, F. (2020). Designing a sustainable multi-channel supply chain distribution network: A case study. Journal of Cleaner Production, 251, 119628.
- Abdolazimi, O., & Khakestari, M. (2020). Determine the optimal number of item groups in the werehouse based on ABC analysis within the framework of a supply chain network.
- Abdolazimi, O., Esfandarani, M. S., & Shishebori, D. (2021). Design of a supply chain network for determining the optimal number of items at the inventory groups based on ABC analysis: a comparison of exact and meta-heuristic methods. Neural Computing and Applications, 33(12), 6641-6656.
- Rasi, R. E., & Sohanian, M. (2020). A multi-objective optimization model for sustainable supply chain network with using genetic algorithm. Journal of Modelling in Management.
- Micheli, G. J., Cagno, E., Mustillo, G., & Trianni, A. (2020). Green supply chain management drivers, practices and performance: A comprehensive study on the moderators. Journal of Cleaner Production, 259, 121024.
- Gao, J., Xiao, Z., Wei, H., & Zhou, G. (2020). Dual-channel green supply chain management with eco-label policy: A perspective of two types of green products. Computers & Industrial Engineering, 146, 106613.
- Pourmehdi, M., Paydar, M. M., & Asadi-Gangraj, E. (2020). Scenario-based design of a steel sustainable closed-loop supply chain network considering production technology. Journal of Cleaner Production, 277, 123298.
- Venkatesh, V. G., Kang, K., Wang, B., Zhong, R. Y., & Zhang, A. (2020). System architecture for blockchain based transparency of supply chain social sustainability. Robotics and Computer-Integrated Manufacturing, 63, 101896.
- Govindan, K., Shaw, M., & Majumdar, A. (2020). Social sustainability tensions in multi-tier supply chain: A systematic literature review towards conceptual framework development. Journal of Cleaner Production, 123075.
- شاوردی، مرضیه. (1399). بازیابی زنجیرهتأمین در عصر کروناویروس – برنامهریزی برای حال و آینده. سلسله گزارشهای میز رصد کرونا- گزارش(8)، بهار 1399.
- Anvari, S., & Turkay, M. (2017). The facility location problem from the perspective of triple bottom line accounting of sustainability. International Journal of Production Research, 55(21), 6266-6287.
- Abdolazimi, O., Salehi Esfandarani, M., Salehi, M., & Shishebori, D. (2020). A Comparison of Solution Methods for the Multi-Objective Closed Loop Supply Chains. Advances in Industrial Engineering, 54(1), 75-98.
- Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied mathematics and computation, 213(2), 455-465.
- Florios, K., & Mavrotas, G. (2014). Generation of the exact pareto set in multi-objective traveling salesman and set covering problems. Applied Mathematics and Computation, 237, 1-19.
- Nikas, A., Fountoulakis, A., Forouli, A., & Doukas, H. (2020). A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems. Operational Research, 1-42.
- Shafiee, M., Zare Mehrjerdi, Y., & Keshavarz, M. (2021). Integrating lean, resilient, and sustainable practices in supply chain network: mathematical modelling and the AUGMECON2 approach. International Journal of Systems Science: Operations & Logistics, 1-21.
- فخرزاد، محمدباقر، لطفی، رضا. (1396). مدل سبز مدیریت موجودی توسط فروشنده با مجاز بودن کمبود در زنجیره تأمین دوسطحی با رویکردهای حل اپسیلون محدودیت و .NSGA-II نشریه پژوهش های مهندسی صنایع در سیستم های تولید. دوره 5، شماره 11، پاییز و زمستان 1396، صفحه 193-209.
- Abdolazimi, O., Esfandarani, M. S., Salehi, M., Shishebori, D., & Shakhsi-Niaei, M. (2021). Development of sustainable and resilient healthcare and non-cold pharmaceutical distribution supply chain for COVID-19 pandemic: a case study. The International Journal of Logistics Management.
- رحیمی شیخ، حبیب اله، شریفی، مانی، شهریاری، محمدرضا. (1396). طراحی مدل زنجیره تأمین تاب آور (مورد مطالعه: سازمان بهزیستی کشور). چشم اندازی مدریت صنعتی. شماره 27، پاییز 1396، صفحه 127-150.
- Pettit, T. J., Fiksel, J., & Croxton, K. L. (2008). Can you measure your supply chain resilience. Supply Chain and Logistics Journal, 10(1), 21-22.
- Glickman, T. S., & White, S. C. (2006). Security, visibility and resilience: the keys to mitigating supply chain vulnerabilities. International Journal of Logistics Systems and Management, 2(2), 107-119.
- Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. The international journal of logistics management.
- جعفرنژاد، احمد، محسنی، مریم. (1394). ارائه چارچوبی برای بهبود عملکرد زنجیره تأمین تاب آور. فصلنامه علمی-ترویجی مدیدیت زنجیره تأمین. سال 17، شماره 48، تابستان 1394، صفحه 38-51.
|