| تعداد نشریات | 22 |
| تعداد شمارهها | 512 |
| تعداد مقالات | 5,389 |
| تعداد مشاهده مقاله | 10,381,193 |
| تعداد دریافت فایل اصل مقاله | 6,902,009 |
Modeling and Optimizing an Aerobic Co-digestion Based on Optimal-Mixture Design | ||
| Biosystems Engineering and Sustainable Technologies | ||
| دوره 1، شماره 2، اسفند 2025، صفحه 31-50 | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22084/best.2025.31593.1011 | ||
| نویسندگان | ||
| Ezatolah Azadi1؛ Majid Rasouli* 1؛ Moloud Jafari2 | ||
| 1Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran. | ||
| 2Department of Mechanical Engineering, École de Technologie Supérieure (ÉTS), Montreal, Canada. | ||
| چکیده | ||
| A mesophilic co-digestion of sugarcane straw and sewage sludge with long hydraulic retention time in lab-scale reactors has been studied. Anaerobic biodegradability was examined in a biochemical methane potential (BMP) testing apparatus using 500 ml bottles. Both the design of the experiment method and the I-optimal mixture design were used as a mixed design strategy to systematically optimize the substrate composition ratios and elucidate the possible synergistic effects for an anaerobic co-digestion system. A reduced cubic model was created by Design-Expert software as a function of substrate composition ratios. The model was experimentally validated by the ANOVA method. Based on the observations, all linear impacts and interactions between substrates showed synergistic effects on the biogas production rate. The optimum proportions of the feedstock were 0.28% (w/w) of Primary sludge (A), 48.98% (w/w) of Secondary sludge (B), and 50.73% (w/w) of sugarcane straw (C). Also, according to the aforementioned optimum proportions, cumulative biogas reaches the maximum level of 8.581 L during 150 days. | ||
| کلیدواژهها | ||
| Lignocellulosic Biomass؛ Response Surface Methodology (RSM)؛ Systematically Optimizing؛ Waste to Energy؛ Wastewater Sludge | ||
| مراجع | ||
|
[1] Alexandre, V.M.F., de Castro, T.M.S., de Araújo, L. V., Santiago, V.M.J., Freire, D.M.G., Cammarota, M.C., 2016. Minimizing solid wastes in an activated sludge system treating oil refinery wastewater. Chem. Eng. Process. Process Intensif. 103, 53-62. https://doi. org/10.1016/J.CEP.2015.10.021
[2] Amin, F.R., Khalid, H., Zhang, H., Rahman, S., Zhang, R., Liu, G., Chen, C., 2017. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7, 1-12. https://doi.org/10.1186/S13568-017-0375-4/TABLES/2
[3] Amin, M.A., Shukor, H., Yin, L.S., Kasim, F.H., Shoparwe, N.F., Makhtar, M.M.Z., Yaser, A.Z., 2022. Methane Biogas Production in Malaysia: Challenge and Future Plan. Int. J. Chem. Eng. https://doi. org/10.1155/2022/2278211
[4] Asaithambi, P., Yesuf, M.B., Govindarajan, R., Hariharan, N.M., Thangavelu, P., Alemayehu, E., 2022. A Review of Hybrid Process Development Based on Electrochemical and Advanced Oxidation Processes for the Treatment of Industrial Wastewater. Int. J. Chem. Eng. https://doi.org/10.1155/2022/1105376
[5] Athanasoulia, E., Melidis, P., Aivasidis, A., 2014. Codigestion of sewage sludge and crude glycerol from biodiesel production. Renew. Energy 62, 73-78. https:// doi.org/10.1016/J.RENENE.2013.06.040
[6] Cai, Y., Zheng, Z., Wei, L., Zhang, H., Wang, X., 2022. The characteristics of multi-substrates (low and high C/N) anaerobic digestion: focus on energy recovery and the succession of methanogenic pathway. Bioresour. Technol. 343. https://doi.org/10.1016/J.BIORTECH.2021.125976
[7] Comesaña, D.A., Comesaña, I.V., Iglesia, S.M. de la, 2018. Municipal Sewage Sludge Variability: Biodegradation through Composting with Bulking Agent. Sewage. https://doi.org/10.5772/INTECHOPEN.75130
[8] Elsayed, M., Andres, Y., Blel, W., Gad, A., Ahmed, A., 2016. Effect of VS organic loads and buckwheat husk on methane production by anaerobic co-digestion of primary sludge and wheat straw. Energy Convers. Manag. 117, 538-547.
[9] Federation, W.E., 1999. Standard Methods for the Examination of Water and Wastewater Standard Methods for the Examination of Water and Wastewater. Public Health 51, 940-940. https://doi.org/10.2105/AJPH.51.6.940-a
[10] Gadow, S.I., Estrada, A.L., Li, Y.Y., 2022. Characterization and potential of two different anaerobic mixed microflora for bioenergy recovery and decolorization of textile wastewater: Effect of C/N ratio, dye concentration and pH. Bioresour. Technol. Reports 17. https://doi.org/10.1016/J.BITEB.2021.100886
[11] Hagos, K., Zong, J., Li, D., Liu, C., Lu, X., 2017. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renew. Sustain. Energy Rev. 76, 1485-1496. https://doi.org/10.1016/J.RSER.2016.11.184
[12] Janke, L., Weinrich, S., Leite, A.F., Terzariol, F.K., Nikolausz, M., Nelles, M., Stinner, W., 2017. Improving anaerobic digestion of sugarcane straw for methane production: Combined benefits of mechanical and sodium hydroxide pretreatment for process designing. Energy Convers. Manag. 141, 378-389. https://doi.org/10.1016/J.ENCONMAN.2016.09.083
[13] Kang, X., Zhang, Y., Li, L., Sun, Y., Kong, X., Yuan, Z., 2020. Enhanced methane production from anaerobic digestion of hybrid Pennisetum by selectively removing lignin with sodium chlorite. Bioresour. Technol. 295, 122289. https://doi.org/10.1016/J. BIORTECH.2019.122289
[14] Li, Yangyang, Xu, F., Li, Yu, Lu, J., Li, S., Shah, A., Zhang, X., Zhang, H., Gong, X., Li, G., 2018. Reactor performance and energy analysis of solid- state anaerobic co-digestion of dairy manure with corn stover and tomato residues. Waste Manag. 73, 130-139. https://doi. org/10.1016/J.WASMAN.2017.11.041
[15] Maragkaki, A.E., Fountoulakis, M., Gypakis, A., Kyriakou, A., Lasaridi, K., Manios, T., 2017. Pilot-scale anaerobic co-digestion of sewage sludge with agroindustrial by-products for increased biogas production of existing digesters at wastewater treatment plants. Waste Manag. 59, 362-370. https://doi.org/10.1016/J. WASMAN.2016.10.043
[16] Matheri, A.N., Ndiweni, S.N., Belaid, M., Muzenda, E., Hubert, R., 2017. Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renew. Sustain. Energy Rev. 80, 756-764. https://doi.org/10.1016/J. RSER.2017.05.068
[17] Montgomery, D.C., 2020. Design and Analysis of Experiments, 10th Edition, Wiley. Wiley 1-682.
[18] Moodley, P., Kana, E.B.G., 2015. Optimization of xylose and glucose production from sugarcane leaves (Saccharum officinarum) using hybrid pretreatment techniques and assessment for hydrogen generation at semi-pilot scale. Int. J. Hydrogen Energy 40, 3859-3867. https://doi.org/10.1016/J.IJHYDENE.2015.01.087
[19] Mu, L., Zhang, L., Zhu, K., Ma, J., Ifran, M., Li, A., 2020. Anaerobic co-digestion of sewage sludge, food waste and yard waste: Synergistic enhancement on process stability and biogas production. Sci. Total Environ. 704, 135429. https://doi.org/10.1016/J.SCITOTENV.2019.135429
[20] Pellera, F.M., Gidarakos, E., 2017. Anaerobic digestion of solid agroindustrial waste in semi-continuous mode: Evaluation of mono-digestion and co-digestion systems. Waste Manag. 68, 103-119. https://doi.org/10.1016/J. WASMAN.2017.06.026
[21] Raheem, A., Sikarwar, V.S., He, J., Dastyar, W., Dionysiou, D.D., Wang, W., Zhao, M., 2018. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 337, 616-641. https://doi.org/10.1016/J.CEJ.2017.12.149
[22] Rao, P.V., Baral, S.S., 2011. Experimental design of mixture for the anaerobic co-digestion of sewage sludge. Chem. Eng. J. 172, 977-986. https://doi.org/10.1016/J.CEJ.2011.07.010
[23] Rasouli, M., Babaei, H., Environmental, B. Ataeiyan, 2023. The effect of lignocellulosic waste on treatment of municipal wastewater in anaerobic digestion process. icevirtuallibrary.com, Journal of Environ. Eng. 18, 61-69. https://doi.org/10.1680/jenes.22.00060
[24] Rasouli, M., Dini, M., Ataeiyan, B., 2022. Anaerobic codigestion of sewage sludge and Cladophora green algae: Investigation of synergistic effects and Optimization of substrate composition ratio. Environ. Eng. Res. https://doi.org/10.4491/EER.2021.516
[25] Serna-García, R., Zamorano-López, N., Seco, A., Bouzas, A., 2020. Co-digestion of harvested microalgae and primary sludge in a mesophilic anaerobic membrane bioreactor (AnMBR): Methane potential and microbial diversity. Bioresour. Technol. 298, 122521. https://doi. org/10.1016/J.BIORTECH.2019.122521
[26] Siddiqui, M.A.H., Pal, S.K., Dewangan, N., Chattopadhyaya, S., Sharma, S., Nekoonam, S., Issakhov, A., 2021. Sludge Formation Analysis in Hydraulic Oil of Load Haul Dumper 811MK v Machine Running at Elevated Temperatures for Bioenergy Applications. Int. J. Chem. Eng. https://doi.org/10.1155/2021/4331809
[27] Sitthikitpanya, N., Sittijunda, S., Khamtib, S., Reungsang, A., 2021. Co-generation of biohydrogen and biochemicals from co-digestion of Chlorella sp. biomass hydrolysate with sugarcane leaf hydrolysate in an integrated circular biorefinery concept. Biotechnol. Biofuels 14, 1-16. https://doi.org/10.1186/S13068-021-02041-6/FIGURES/6
[28] Smithers, J., 2014. Review of sugarcane trash recovery systems for energy cogeneration in South Africa. Renew. Sustain. Energy Rev. 32, 915-925. https://doi.org/10.1016/j.rser.2014.01.042
[29] Solé-Bundó, M., Garfí, M., Matamoros, V., Ferrer, I., 2019. Co-digestion of microalgae and primary sludge: Effect on biogas production and microcontaminants removal. Sci. Total Environ. 660, 974-981. https://doi.org/10.1016/J.SCITOTENV.2019.01.011
[30] Sugarcane Land & Water Food and Agriculture Organization of the United Nations Land & Water Food and Agriculture Organization of the United Nations [WWW Document], n.d. URL https://www.fao.org/land-water/databases-and-software/crop-information/sugarcane/en/(accessed 7.5.23).
[31] Sun, C., Guo, L., Zheng, Y., Yu, D., Jin, C., Zhao, Y., Yao, Z., Gao, M., She, Z., 2022. Effect of mixed primary and secondary sludge for two-stage anaerobic digestion (AD). Bioresour. Technol. 343. https://doi.org/10.1016/J.BIORTECH.2021.126160
[32] Tahwia, A.M., Hamido, M.A., Elemam, W.E., 2023. Using mixture design method for developing and optimizing eco-friendly ultra-high performance concrete characteristics. Case Stud. Constr. Mater. 18, e01807. https://doi.org/10.1016/J.CSCM.2022.E01807
[33] Villamil, J.A., Mohedano, A.F., San Martín, J., Rodriguez, J.J., de la Rubia, M.A., 2020. Anaerobic co-digestion of the process water from waste activated sludge hydrothermally treated with primary sewage sludge. A new approach for sewage sludge management. Renew. Energy, 146, 435-443. https://doi.org/10.1016/j.renene.2019.06.138
[34] Wang, R., Lin, K., Ren, D., Peng, P., Zhao, Z., Yin, Q., Gao, P., 2022. Energy conversion performance in co-hydrothermal carbonization of sewage sludge and pinewood sawdust coupling with anaerobic digestion of the produced wastewater. Sci. Total Environ. 803. https:// doi.org/10.1016/J.SCITOTENV.2021.149964
[35] Wei, Y., Van Houten, R.T., Borger, A.R., Eikelboom, D.H., Fan, Y., 2003. Minimization of excess sludge production for biological wastewater treatment. Water Res., 37, 4453-4467. https://doi.org/10.1016/S0043-1354(03)00441-X
[36] Xie, S., Wickham, R., Nghiem, L.D., 2017. Synergistic effect from anaerobic co-digestion of sewage sludge and organic wastes. Int. Biodeterior. Biodegradation 116, 191-197. https://doi.org/10.1016/J.IBIOD.2016.10.037
[37] Yaser, A.Z., Lamaming, J., Suali, E., Rajin, M., Saalah, S., Kamin, Z., Safie, N.N., Aji, N.A.S., Wid, N., 2022. Composting and Anaerobic Digestion of Food Waste and Sewage Sludge for Campus Sustainability: A Review. Int. J. Chem. Eng. https://doi.org/10.1155/2022/6455889 | ||
|
آمار تعداد مشاهده مقاله: 111 |
||