تأثیر نانومس بر ویژگیهای بیوشیمیایی و رشدی مورینگا (Moringa oleifera L.) تحت تنش شوری | ||
دوفصلنامه فنآوری تولیدات گیاهی | ||
مقاله 1، دوره 16، شماره 2، دی 1403، صفحه 1-20 اصل مقاله (1.23 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22084/ppt.2024.29698.2132 | ||
نویسندگان | ||
مهسا عامری1؛ منصوره شمیلی* 2؛ وحید روشن سروستانی3؛ مصطفی قاسمی4 | ||
1دانشجوی سابق دکتری ، گروه علوم باغبانی، دانشگاه هرمزگان، بندرعباس، ایران | ||
2دانشیار، گروه علوم باغبانی، دانشگاه هرمزگان، بندرعباس، ایران | ||
3دانشیار، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، شیراز، ایران | ||
4استادیار، بخش زراعی باغی. مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان قزوین، قزوین، ایران | ||
چکیده | ||
مورینگا اولیفرا، گیاهی چندساله و دارویی است که در مناطق گرمسیر رشد میکند و میتواند طیف گستردهای از شرایط بارندگی را تحمل کند. شوری یکی از تنشهای غیرزیستی محدودکننده عملکرد در گیاهان است. باتوجهبه نقش ساختاری مس، استفاده از آن میتواند آسیبهای ناشی از تنش شوری را کاهش دهد. این پژوهش با هدف مطالعه تأثیر نانوذره مس (0، 5، 10 و 20 پیپیام) بر ویژگیهای بیوشیمیایی و رشدی گیاه مورینگا تحت شوری کلریدسدیم (0، 3.9، 7.8 و 11.7 دسیزیمنسبرمتر) انجام شد. نتایج حاکی از آن بود که تأثیر سطوح نمک و نانو مس بر صفات موردارزیابی معنیدار است. شوری موجب کاهش در وزن خشک شاخساره، محتوای کلروفیل کل، محتوای نسبی آب برگ، پروتئین و افزایش در فعالیت سوپراکسیددیسموتاز شد. تحت شوری 11.7 دسیزیمنسبرمتر، محلولپاشی نانومس وزن تر شاخساره (22 درصد)، کاروتنوئید (11 درصد)، پرولین (8 درصد)، پروتئین (16 درصد) و فعالیت سوپراکسیددیسموتاز (10 درصد) شد را افزایش داد. کمترین فلورسانس کلروفیل در گیاهانی که شوری 11.7 دسیزیمنسبرمتر را دریافت کرده بودند، مشاهده شد. همچنین شوری 11.7 دسیزیمنسبرمتر باعث کاهش سطح برگ (49 درصد) شد. تیمار گیاهان با 20 پیپیام نانومس، افزایش 26 درصدی سطح برگ را باعث شد. در مجموع میتوان نتیجه گرفت که محلولپاشی نانوذرات مس (تا 20 پیپیام) میتواند نقش موثری در کاهش اثرات سوء تنش شوری در گیاه مورینگا داشته و سبب بهبود ویژگیهای بیوشیمیایی، آنتیاکسیدانی و رشدی این گیاه در شرایط شوری شود. | ||
کلیدواژهها | ||
کلروفیل؛ پرولین؛ محتوای نسبی آب برگ؛ سوپراکسید دیسموتاز | ||
مراجع | ||
Abbaspour, H. (2012). Effect of salt stress on lipid peroxidation, antioxidative enzymes, and proline accumulation in pistachio plants. Journal of Medicinal Plants Research, 6(3), 526-529. http://dx.doi.org/10.5897/JMPR11.1449 Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., Ziaur-Rehman, M., Irshad, M. K. and harwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: A review. Environmental Science and Pollution Research, 22, 8148 –8162. https://doi.org/10.1007/s11356-015-4496-5 Ahmed, F., Javed, B., Razzaq, A. and Mashwan, Z. R. (2021). Applications of copper and silver nanoparticles on wheat plants to induce drought tolerance and increase yield. The Institution of Engineering and Technology Nanobiotechnology, 15, 68 -78. https://doi.org/10.1049/nbt2.12002 Ahmad, P., Ahanger, M. A., Alyemeni, M. N., Wijaya, L., Egamberdieva, D., Bhardwaj, R. and Ashraf, M. (2017). Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) Czern and Coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. Journal of Plant Interactions, 12, 429-437. https://doi.org/10.1080/17429145.2017.1385867 Azad, H., Fakheri Barat, A., Mehdinezhad, N. and Parmoon, G. (2018). The study the efficacy of drought stress and foliar application of nano iron chelated on antioxidant enzymes activity and yield flower in plant in chamomile genotypes (Matricaria Chamomilla L.). Journal of Plant Process and Function, 7(26), 223-237. https://sid.ir/paper/397123/en (In Persian) Baker, N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759 Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. https://doi.org/10.1007/BF00018060 Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3 Broadley, M., Brown, P., Cakmak, I., Rengel, Z. and Zhao, F. (2012). Function of nutrients: micronutrients. In Marschner's mineral nutrition of higher plants (pp. 191-248). Academic Press, London. https://doi.org/10.1016/B978-0-12-384905-2.00007-8 Bybordi, A. (2012). Study effect of salinity on some physiologic and morphologic properties of two grape cultivars. Life Science Journal, 9(4), 1092-1101. http://www.dx.doi.org/10.7537/marslsj090412.166 Choudhary, R. C., Kumaraswamy, R. V., Kumari, S., Sharma, S. S., Pal, A., Raliya, R., Biswas, P. and Saharan, V. (2017). Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Scientific Reports, 7(1), 9754. https://doi.org/10.1038/s41598-017-08571-0 Couee, I., Sulmon, C., Gouesbet, G. and Amrani, A. (2006). Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. Journal of Experimental Botany, 57(3), 449-459. https://doi.org/10.1093/jxb/erj027 Da Costa, M. V. J. and Sharma, P. K. (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica, 54, 110-119. https://doi.org/10.1007/s11099-015-0167-5. El-Fouly, M. M., Mobarak, Z. M. and Salama, Z. A. (2011). Micronutrients (Fe, Mn, Zn) foliar spray for increasing salinity tolerance in wheat Triticum aestivum L. African Journal of Plant Science, 5, 314-322. https://academicjournals.org/journal/AJPS/article-full-text-pdf/2A523909639 Essa, H. L., Abdelfattah, M. S., Marzouk, A. S., Shedeed, Z., Guirguis, H. A. and El-Sayed, M. M. (2021). Biogenic copper nanoparticles from Avicennia marina leaves: Impact on seed germination, detoxification enzymes, chlorophyll content and uptake by wheat seedlings. PlOS One, 16(4), e0249764. https://doi.org/10.1371/journal.pone.0249764. Fantoukh, O. I., Albadry, M. A., Parveen, A., Hawwal, M. F., Majrashi, T., Ali, Z., Khan, S.I., Chittiboyina, A.G. and Khan, I. A. (2019). Isolation, synthesis, and drug interaction potential of secondary metabolites derived from the leaves of miracle tree (Moringa oleifera) against CYP3A4 and CYP2D6 isozymes. Phytomedicine, 60, 153010. https://doi.org/10.1016/j.phymed.2019.153010 Farkhonded, R., Nabizadeh, E. and Jalilnezhad, N. (2012). Effect of salinity stress on proline content, membrane stability and water relation in two sugar beet cultivars. International Journal of Agicultural Science, 2(5), 385-392. http://www.inacj.com/attachments/sect Fathi, A., Zahedi, M., Torabian, S. and Khoshgoftar, A. (2017). Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. Journal of Plant Nutrition, 40(10), 1376-1385. https://doi.org/10.1080/01904167.2016.1262418 Fageria, N. K. (2011). The use of nutrients in crop plants. Jahad Daneshgahi Mashhad, Iran. (In Persian) Filippou, P., Bouchagier, P., Skotti, E. and Fotopoulos, V. (2014). Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environmental and Experimental Botany, 97, 1-10. https://doi.org/10.1016/j.envexpbot.2013.09.010 Gandji, K., Chadare, F. J., Idohou, R., Salako, V. K., Assogbadjo, A. E. and Glèlè, R. L. K. (2018). Status and utilisation of Moringa oleifera Lam: A review. African Crop Science Journal, 26, 137–156. https://doi.org/10.4314/acsj.v26i1.10 Ghanbari, M., Mokhtassi-Bidgoli, A., Saran, P. T. S. and Mahaleh, R. M. L. (2022). Evaluation of leaf yield, physiological and biochemical characteristics of green tea (Camellia sinensis L.) in response to different irrigation regimes and foliar application of Cu and Zn nano-chelate. Journal of Horticultural Plants Nutrition, 5(1), 28-43. https://doi.org/10.22070/hpn.2022.14601.1140 Govorov, A. O. and Carmeli, I. (2007). Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Letters, 7(3), 620-625. https://doi.org/10.1021/nl062528t Hashemi, A. and Shahani, A. (2019). Effects of salt stress on the morphological characteristics, total phenol and total anthocyanin contents of Roselle (Hibiscus sabdariffa L.). Plant Physiology Reports, 24, 210-214. https://doi.org/10.1007/s40502-019-00446-y Hayat, K., Bundschuh, J., Jan, F., Menhas, S., Hayat, S., Haq, F., Shah, M. A., Chaudhary, H. J., Ullah, A., Zhang, D., Zhou, P. (2020). Combating soil salinity with combining saline agriculture and phytomanagement with salt-accumulating plants. Critical Reviews in Environmental Science and Technology, 50(11), 1085-1115. https://doi.org/10.1080/10643389.2019.1646087 Hernández-Fuentes, A. D., López-Vargas, E. R., Pinedo-Espinoza, J. M., Campos-Montiel, R. G., Valdés-Reyna, J. and Juárez-Maldonado, A. (2017). Postharvest behavior of bioactive compounds in tomato fruits treated with Cu nanoparticles and NaCl stress. Applied Sciences, 7(10), 980. https://doi.org/10.3390/app7100980 Hernández-Hernández, H., González-Morales, S., Benavides-Mendoza, A., Ortega-Ortiz, H., Cadenas-Pliego, G. and Juárez-Maldonado, A. (2018). Effects of chitosan–PVA and Cu nanoparticles on the growth and antioxidant capacity of tomato under saline stress. Molecules, 23(1), 178. https://doi.org/10.3390/molecules23010178 Hiscox, J. D. and Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332-1334. https://doi.org/10.1139/b79-163 Hosseini, H., Mousavi-Fard, S., Fatehi, F. and Qaderi, A. (2017). Changes in phytochemical and morpho-physilogical traits of thyme (Thymus vulgaris CV Varico 3) under different salinity levels. Journal of Medicinal plants, 16(61), 22-33(In Persian). http://jmp.ir/article-1-1419-en.html Iqbal, M. N., Rasheed, R., Ashraf, M. Y., Ashraf, M. A. and Hussain, I. (2018). Exogenously applied zinc and copper mitigate salinity effect in maize (Zea mays L.) by improving key physiological and biochemical attributes. Environmental Science and Pollution Research, 25, 23883-23896. https://doi.org/10.1007/s11356-018-2383-6 Jamil, M. and Rha, E. S. (2013). NaCl stress-induced reduction in growth, photosynthesis and protein in Mustard. Journal of Agricultural Science, 5(9), 114-127. http://dx.doi.org/10.5539/jas.v5n9p114 Kabata-Pendias, A. and Pendias, H. (1992). Trace elements in soils and plants. CRC Press, Boca Raton, USA. https://doi.org/10.1201/9781420039900 Karnosky, D. F., Gagnon, Z. E., Dickson, R. E., Coleman, M. D., Lee, E. and Lsebrands, J. (1996) Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings. Canadian Journal of Forest Research, 26, 23-37. https://doi.org/10.1139/x26-003 Kaya, M. D., Okçu, G., Atak, M., Cıkılı, Y. and Kolsarıcı, Ö. (2006). Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24, 291-295. https://doi.org/10.1016/j.eja.2005.08.001. Khan, I., Saeed, Kh. and Idrees Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 7, 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011 Kou, X., Li, B., Olayanju, J. B., Drake, J. M. and Chen, N. (2018). Nutraceutical or pharmacological potential of Moringa oleifera Lam. Nutrients, 10(3), 343. https://doi.org/10.3390/nu10030343 Koyro, H. W. (2006). Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany, 56, 136-146. https://doi.org/10.1016/j.envexpbot.2005.02.001. Llamas, A., Ullrich, C. I. and Sanz, A. (2000). Cadmium effects on transmembrance electrical potential difference, respiration and membrane permeability of rice (Oryza sativa) roots. Plant and Soil, 219, 21-28. https://doi.org/10.1023/A:1004753521646 Lowry, O. H., Rosebrough, N. J. and Rand, R. J. (1951). Protein measurement with the folinphenol reagent. Journal of Biological Chemistry, 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6 Lwalaba, J. L. W., Louis, L. T., Zvobgo, G., Richmond, M. E. A., Fu, L., Naz, S., Mwamba, M., Mundende, R. P. M. and Zhang, G. (2020). Physiological and molecular mechanisms of cobalt and copper interaction in causing phyto-toxicity to two barley genotypes differing in Co tolerance. Ecotoxicology and Environmental Safety, 187, 109866. https://doi.org/10.1016/j.ecoenv.2019.109866 Ma, J., Saleem, M. H., Yasin, G., Mumtaz, S., Qureshi, F. F., Ali, B., Ercisli, S., Alhag, S.K., Ahmed, A. E., Vodnar, D. C. and Chen, F. (2022). Individual and combinatorial effects of SNP and NaHS on morpho-physio-biochemical attributes and phytoextraction of chromium through Cr-stressed spinach (Spinacia oleracea L.). Frontiers in Plant Science, 13, 973740. https://doi.org/10.3389/fpls.2022.973740 Ma, X., Zhang, J. and Huang, B. (2016). Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environmental and Experimental Botany, 125, 1–11. https://doi.org/10.1016/j.envexpbot.2016.01.002 Maity, A., Natarajan, N., Vijay, D., Srinivasan, R., Pastor, M. and Malaviya, D. R. (2018). Influence of metal nanoparticles (NPs) on germination and yield of oat (Avena sativa) and berseem (Trifolium alexandrinum). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88, 595-607. https://doi.org/10.1007/s40011-016-0796-x Mirza Masoumzadeh, B., Imani, A. A. and Khayamaim, S. (2012). Salinity stress effect on proline and chlorophyll rate in four beet cultivars. Annals of Biological Research, 3(12), 5453-5456. http://scholarsresearchlibrary.com/AB. Moradbeygi, H., Jamei, R., Heidari, R. and Darvishzadeh, R. (2020). Investigating the enzymatic and non-enzymatic antioxidant defense by applying iron oxide nanoparticles in Dracocephalum moldavica L. plant under salinity stress. Scientia Horticulturae, 272, 109537. https://doi.org/10.1016/j.scienta.2020.109537 Mostofa, M. G., Rahman, M. M., Ansary, M. M. U., Keya, S. S., Abdelrahman, M., Miah, M. G. and Phan Tran, L. S. (2021). Silicon in mitigation of abiotic stress-induced oxidative damage in plants. Critical Reviews in Biotechnology, 41(6), 918-934. https://doi.org/10.1080/07388551.2021.1892582 Mykhaylenko, N. F. and Zolotareva, E. K. (2017). The effect of copper and selenium nanocarboxylates on biomass accumulation and photosynthetic energy transduction efficiency of the green algae Chlorella vulgaris. Nanoscale Research Letters, 12, 1-8. https://doi.org/10.1186/s11671-017-1914-2 Nasiri, M., Safari, H. and Pourhadian, H. (2022). An investigation the effect of copper nanoparticles on morphological, physiological, biochemical properties and yield of Mallow under drought stress conditions. Plant Process and Function, 11(48), 35-47. http://jispp.iut.ac.ir/article-1-1593-en.html (In Persian) Noman, M., Ahmed, T., Shahid, M., Niazi, M. B. K., Qasim, M., Kouadri, F., Abdulmajeed, A. M., Alghanem, S. M., Ahmad, N., Zafar, M. and Ali, S. (2021). Biogenic copper nanoparticles produced by using the Klebsiella pneumoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms. Ecotoxicology and Environmental Safety, 217, 112264. https://doi.org/10.1016/j.ecoenv.2021.112264 Noohpisheh, Z., Amiri, H., Mohammadi, A. and Farhadi, S. (2021). Effect of the foliar application of zinc oxide nanoparticles on some biochemical and physiological parameters of Trigonella foenum-graecum under salinity stress. Plant Biosystems-an International Journal Dealing with all Aspects of Plant Biology, 155(2), 267-280. https://doi.org/10.1080/11263504.2020.1739160 Nouman, W., Siddiqui, M. T., Basra, S. M. A., Khan, R. A., Gull, T., Olson, M. E. and Hassan, M. (2012). Response of Moringa oleifera to saline conditions. International Journal of Agriculture and Biology, 14(5), 757–762. http://www.fspublishers.org/ijab/past-issues/IJABVOL_14_NO_5/12.pdf Ozden, M., Demirel, U. and Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119(2), 163-168. https://doi.org/10.1016/j.scienta.2008.07.031 Ozturk, L., Demir, Y., Unlukara, A., Karatas, I., Kurunc, A. and Duzdemir, O. (2012). Effects of long-term salt stress on antioxidant system, chlorophyll and proline contents in pea leaves. Romanian Biotechnological Letters, 17(3), 7227-7236. https://rombio.unibuc.ro/wp-content/uploads/2022/05/17-3-2.pdf Pareek, A., Pant, M., Gupta, M. M., Kashania, P., Ratan, Y., Jain, V., Pareek, A. and Chuturgoon, A. A. (2023). Moringa oleifera: An updated comprehensive review of its pharmacological activities, ethnomedicinal, phytopharmaceutical formulation, clinical, phytochemical, and toxicological aspects. International Journal of Molecular Sciences, 24(3), 2098. https://doi.org/10.3390/ijms24032098 Pasandi Pour, A, Farahbakhsh, H. and Saffari, M. (2014). Response of fenugreek to short-term salinity stress in relation to lipid peroxidation, antioxidant activity and protein content. Ethno-Pharmaceutical Products, 1(1), 45-52. https://dorl.net/dor/20.1001.1.23833017.2014.1.1.7.6 Pashangah, Z., Shamili, M., Abdolahi, F. and Ghasemi, M. (2020). The interaction of salinity and gibberellin on leaf abscission, dry matter, antioxidant enzymes activity and ion content in guava (Psidium guajava L). Journal of Plant Research (Iranian Journal of Biology), 33(4), 809-826. https://dorl.net/dor/20.1001.1.23832592.1399.33.4.15.1 Pérez-Labrada, F., López-Vargas, E. R., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides-Mendoza, A. and Juárez-Maldonado, A. (2019). Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants, 8(6), 151. https://doi.org/10.3390/plants8060151. Peyvandi, M. and Mirza, M., (2011). Comparison of the effect of iron nanoclay on growth parameters and activity of basaltic antioxidant enzymes (Ocimum basilicum). Journal of Cellular Biotechnology –Molecular, 1, 98-89. http://dorl.net/dor/20.1001.1.22285458.1390.1.4.3.7 Prasad, K. S., Patel, H., Patel, T., Patel, K. and Selvaraj, K. (2013). Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage. Colloids and Surfaces B: Biointerfaces, 103, 261-266. https://doi.org/10.1016/j.colsurfb.2012.10.029 Rasheed, A., Li, H., Tahir, M. M., Mahmood, A., Nawaz, M., Shah, A. N., Aslam, M.T., Negm, S., Moustafa, M., Hassan, M.U. and Wu, Z. (2022). The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review. Frontiers in Plant Science, 13, 976179. https://doi.org/10.3389/fpls.2022.976179 Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S. and Brestic, M., (2017). Impact of metal and metal oxide nanoparticles on plant: a critical review. Frontiers in Chemistry, 5, 78. https://doi.org/10.3389/fchem.2017.00078. Riaihinia, S. and Danaeipour, Z. (2022). Evaluation of the effect of nano and chelated iron fertilizer in Salicornia under salinity stress. Journal of Plant Research (Iranian Journal of Biology), 35(1), 174-188. https://dorl.net/dor/20.1001.1.23832592.1401.35.1.11.5 Rossi, L., Zhang, W. and Ma, X. (2017). Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environmental Pollution, 229, 132-138. https://doi.org/10.1016/j.envpol.2017.05.083 Sadeghi Lotfabadi S., Kafi, M. and Khazai, H.R. (2010). Effects of calcium, potassium and method of application on Sorghum (Sorghum bicolor L.) morphological and physiological traits in the presence of salinity. Journal of Water and Soil, 24(2), 385-393. https://doi.org/10.22067/jsw.v0i0.3255 Saeidinia, M., beiranvand, F., Mumivand, H. and Mousavi, S. H. (2023). The effect of the salinity stress on the yield, morphological characteristics, essential oil and RWC of Satureja hortensis (case study: Khoramabad, Iran). Journal of Drought and Climate change Research, 1(1), 97-108. https://dio.10.22077/JDCR.2023.6152.1017 (In Persian) Saljougi, S. and ranjbar, M. (2019). An investigating of the interaction of zinc and copper on the accumulation of elements, antioxidant enzymes, photosynthetic pigments and malon dialdehyde in basil (Ocimum basilicum). Plant Process and Function, 8(33), 339-358. http://jispp.iut.ac.ir/article-1-1002-fa.html. (In Persian) Schaller, R. D. and Klimov, V. I. (2004). High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Physical Review Letters, 92(18), 186601-186604. https://doi.org/10.1103/PhysRevLett.92.186601 Shaw, A. K., Ghosh, S., Kalaji, H.M., Bosa, K., Brestic, M., Zivcak, M. and Hossain, Z. (2014). Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environmental and Experimental Botany, 102, 37-47. https://doi.org/10.1016/j.envexpbot.2014.02.016. Singh, A., Singh, N. B., Hussain, I. and Singh, H. (2017). Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. Journal of Biotechnology, 262, 11–27. https://doi: 10.1016/j.jbiotec.2017.09.016. Smart, R. E. and Bingham, G. E. (1974). Rapid estimates of relative water content. Plant Physiology, 53, 258–260. https://doi.org/10.1104/pp.53.2.258 Soliman, A. S., El-feky, S. A. and Darwish, E. (2015). Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. Journal of Horticulture and Forestry, 7(2), 36-47. https://doi.org/10.5897/JHF2014.0379 Tabatabaee, Sh., Iranbakhsh, A., Shamili, M., Oraghi Ardebili, Z. (2021). Copper nanoparticles mediated physiological changes and transcriptional variations in microRNA159 (miR159) and mevalonate kinase (MVK) in pepper; potential benefits and phytotoxicity assessment. Journal of Environmental Chemical Engineering, 9(9), 106151. https://doi.org/10.1016/j.jece.2021.106151 Tiloke, C., Phulukdaree, A. and Chuturgoon, A. A. (2016). The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on human esophageal cancer cells. Journal of Medicinal Food, 19(4), 398-403. https://doi.org/10.1089/jmf.2015.0113 Toscano, S., Ferrante, A. and Romano, D. (2019). Response of Mediterranean ornamental plants to drought stress. Horticulturae, 5(1), 6. https://doi.org/10.3390/horticulturae5010006 Tuna, A. L., Kaya, C., Dikilitas, M. and Higgs, D. (2008). The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental of Botany, 62, 1–9. https://doi.org/10.1016/j.envexpbot.2007.06.007. Yang, L., Wang, X., Chang, N., Nan, W., Wang, S., Ruan, M., Sun, L., Li, S. and Bi, Y. (2019). Cytosolic glucose-6-phosphate dehydrogenase is involved in seed germination and root growth under salinity in Arabidopsis. Frontiers in Plant Science, 10, 182. https://doi.org/10.3389/fpls.2019.00182 Yang, Y. and Guo, Y. (2018). Elucidating the molecular mechanisms mediating plant salt stress responses. New Phytologist, 217(2), 523-539. https://doi.org/10.1111/nph.14920 Zarei, M., Azizi, M., Rahemi, M. and Tehranifar, A. (2016) Evaluation of NaCl salinity tolerance of four fig genotypes based on vegetative growth and ion content in leaves, shoots, and roots. HortScience, 51, 1427-1434. https://doi.org/10.21273/HORTSCI11009-16 | ||
آمار تعداد مشاهده مقاله: 246 تعداد دریافت فایل اصل مقاله: 244 |