تأثیر هیوماتپتاسیم بر صفات مورفولوژیک و فیتوشیمیایی گیاه دارویی پروانش (Catharanthus roseus (L.) G. DON) | ||
دوفصلنامه فنآوری تولیدات گیاهی | ||
مقاله 5، دوره 16، شماره 2، دی 1403، صفحه 67-82 اصل مقاله (1.14 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22084/ppt.2024.29650.2131 | ||
نویسندگان | ||
مریم کاویاونی1؛ داود بخشی* 2؛ محمد باقر فرهنگی3؛ مهرداد چائی چی4 | ||
1دانشجوی دکتری، گروه علوم و مهندسی باغبانی، پردیس دانشگاهی، دانشگاه گیلان، رشت، ایران | ||
2دانشیار، گروه علوم و مهندسی باغبانی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران | ||
3استادیار، گروه علوم و مهندسی خاک، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران | ||
4استادیار پژوهشی، بخش تحقیقات اصلاح و تهیه نهال و بذر، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی، سازمان تحقیقات، آموزش و ترویج کشاورزی، همدان، ایران | ||
چکیده | ||
پروانش با نام علمی (Catharanthus roseus (L.) G. DON) متعلق به خانواده Apocynaceae است. این گیاه در بسیاری از کشورهای دنیا کشت و تولید میشود. بهمنظور بررسی تأثیر کود هیوماتپتاسیم بر خصوصیات مورفوفیزیولوژیک و ترکیبات فیتوشیمیایی این گیاه، آزمایش مزرعهای در باغ گیاهان دارویی همدان در دو سال زراعی متوالی 1401 و 1402 در قالب طرح بلوک کامل تصادفی اجرا شد. تیمار هیوماتپتاسیم در پنج سطح 0، 2.5، 3، 3.5، 4 گرم بر مترمربع بهصورت کودآبیاری و در سه تکرار اعمال شد. اثر هیوماتپتاسیم بر تعداد گل و برگ، طول ریشه و ساقه، وزن تر و خشک کل گیاه، کلروفیلکل، پرولین، فنلکل، فلانوئیدکل و فعالیت آنتیکسیدانی (DPPH) برگ معنیدار بود (p<0.05). همچنین اثر سال بر این فاکتورها بهجز کلروفیل و فنل برگ معنیدار شد (p<0.05). اثرمتقابل تیمار× سال بر تعداد گل، وزن خشک کل گیاه و کلروفیل a، معنیدار شد (p<0.05). با افزایش سطح هیوماتپتاسیم مقدار همه صفات بهجز پرولین افزایش یافت. اعمال تیمار در سال دوم بیشترین تأثیر را بر همه صفات بهجز کلروفیل b، a، وکل و فنل برگ داشت. مقایسه میانگین اثر متقابل تیمار × سال نشان داد که بیشترین تعداد گل (13.77) و وزن خشک کل (55.32 گرم) در سال دوم کشت در سطح (چهار گرم بر متر مربع) هیوماتپتاسیم بود. باتوجهبه نتایج میتوان گفت که کاربرد پیوسته هیوماتپتاسیم بهعنوان کود آلی تأثیر مثبت بر خصوصیات مورفوفیزیولوژیک و ترکیبات فیتوشیمیایی گیاه پروانش داشت. | ||
کلیدواژهها | ||
آنتیاکسیدان؛ شاخصهای رشد؛ فلاونوئید؛ فنل | ||
مراجع | ||
Arancon, N. Q., Lee, S., Edwards, C. A. and Atiyeh, R. (2003). Effects of humic acids derived from cattle, food and paper-waste vermicomposts on growth of greenhouse plants: The 7th international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia, 47(5-6): 741-744. https://doi.org/10.1016/S0031-4056(04)70262-0 Arteca, R. N. (1996). Plant Growth Substances: Principles and Applications. Springer Science & Business Media. https://doi.org/10.1007/978-1-4757-2451-6 Aslani, S., Barzegar, T. and Nikbakht, J. (2019). Effect of foliar application of humic acid on growth, yield, and fruit quality of tomato (Lycopersicon pimpinellifolium (L.) Mill) under irrigation deficit stress. Plant Process and Function, 8 (32) : 69-84 (In persian)URL: http://jispp.iut.ac.ir/article-1-851-en.html Ayman, H. A., Badawy, S. A., Abdel Latef, A. A. H., El Hosary, A. A., Abd El Razek, U. A. and Taha, R. S. (2021). Integrated effects of potassium humate and planting density on growth, physiological traits and yield of Vicia faba L. grown in newly reclaimed soil. Agronomy, 11 (3): 461-473. https://doi.org/10.3390/agronomy11030461 Bates, L. S., Waldren, R. P. A. and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207. https://doi.org/10.1007/BF00018060 Berbara, R. L. and García, A. C. (2013). Humic substances and plant defense metabolism. In: Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, pp. 297-319. https://doi.org/10.1007/978-1-4614-8591-9_11 Canellas, L. P., Balmori, D. M., Médici, L. O., Aguiar, N. O., Campostrini, E., Rosa, R. C. and Olivares, F. L. (2013). A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant and soil. 366: 119-132. https://doi.org/10.1007/s11104-012-1382-5 Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P. and Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae. 196: 15-27. https://doi.org/10.1016/j.scienta.2015.09.013 Canellas, L. P., Spaccini, R., Piccolo, A., Dobbss, L. B., Okorokova-Façanha, A. L., de Araújo Santos, G. and Façanha, A. R. (2009). Relationships between chemical characteristics and root growth promotion of humic acids isolated from Brazilian oxisols. Soil Science. 174(11): 611-620. https://doi.org/10.1097/SS.0b013e3181bf1e03 Chang, C. C., Yang, M. H., Wen, H. M. and Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis. 10(3). https://doi.org/10.38212/2224-6614.2748 Chowdhury, J. A., Karim, M. A., Khaliq, Q. A., Ahmed, A. U. and Mondol, A. M. (2017). Effect of drought stress on water relation traits of four soybean genotypes. SAARC Journal of Agriculture. 15(2): 163-175. https://doi.org/10.3329/sja.v15i2.35146 Cordeiro, F. C., Santa-Catarina, C., Silveira, V., & De Souza, S. R. (2011). Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays). Bioscience, Biotechnology, and Biochemistry. 75(1): 70-74. https://doi.org/10.1271/bbb.100553 Dawood, M. G., Abdel-Baky, Y. R., El-Awadi, M. E. S. and Bakhoum, G. S. (2019). Enhancement quality and quantity of faba bean plants grown under sandy soil conditions by nicotinamide and/or humic acid application. Bulletin of the National Research Centre. 43: 1-8. https://doi.org/10.1186/s42269-019-0067-0 Ehteshami, M. R. and Chai-Chi, M. R. (2010). Organic Agriculture (Keshtazi). Guilan University Publications. (In persian). El-Sawy, S. M., El-Bassiony, A. M., Fawzy, Z. F. and Shedeed, S. I. (2021). Improving yield, physical and chemical qualities of sweet fennel bulbs by spraying of potassium humate. Journal of Horticultural Science and Ornamental Plants. 13(3): 272-281. https:// doi.org/ 10.5829/idosi.jhsop.2021.272.281 Estefan, G., Sommer, R., and Ryan, J., (2013). Methods of soil, plant, and water analysis. A manual for the West Asia and North Africa region. 3(2). https://doi.org/10.1186/s42269-019-0067-0 Farjami, A. A. and NABAVI, K. S. (2014). Effect of humic acid and phosphorus on the quantity and quality of Marigold (Calendula officinalis L.) yield. Journal of Crop Ecophysiology. 7: 4 (28), 443-452. (In persian). Farshchi, H. S. K., Arani, M. A. and NematiI, S. H. (2014). Phytochemical and Morphological Attributes of St. John's Wort (Hypericum perforatum) Affected by Organic and Inorganic Fertilizers; Humic Acid and Potassium Sulphate. Notulae Scientia Biologicae. 6(3): 326-330. https://doi.org/10.15835/nsb639398 García, A. C., Santos, L. A., de Souza, L. G. A., Tavares, O. C. H., Zonta, E., Gomes, E. T. M., & Berbara, R. L. L. (2016). Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants. Journal of Plant Physiology. 192: 56-63. https://doi.org/10.1016/j.jplph.2016.01.008 Gulser, F., Sonmez, F., & Boysan, S. (2010). Effects of calcium nitrate and humic acid on pepper seedling growth under saline condition. Journal of Environmental Biology. 31(5): 873. Hatano, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chemical and Pharmaceutical Bulletin. 36(6): 2090-2097. https://doi.org/10.1248/cpb.36.2090 Hernandez, O. L., Calderín, A., Huelva, R., Martínez-Balmori, D., Guridi, F., Aguiar, N. O. and Canellas, L. P. (2015). Humic substances from vermicompost enhance urban lettuce production. Agronomy for Sustainable Development. 35: 225-232. https://doi.org/10.1007/s13593-014-0221-x Ibrahim, S. M., & Ali, A. (2018). Effect of potassium humate application on yield and nutrient uptake of maize grown in a calcareous soil. Alexandria Science Exchange Journal. 39(July-September), 412-418. https://doi.org/10.21608/asejaiqjsae.2018.10601 Idrees, M., Anjum, M. A., & Mirza, J. I. (2018). Potassium humate and NPK application rates influence yield and economic performance of potato crops grown in clayey loam soils. Soil Environ. 37(1): 53-61. https://doi.org/10.25252/SE/18/51384 Jalali, M. (2013). Soil fertility. Bu Ali Sina University Press, 551p. (In persian) Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry. 1(1): F4-3. https://doi.org/10.1002/0471142913.faf0403s01 Liu, C., Cooper, R. J., & Bowman, D. C. (1998). Humic acid application affects photosynthesis, root development, and nutrient content of creeping bentgrass. Horticultural Science. 33(6): 1023-1025. https://doi.org/10.21273/HORTSCI.33.6.1023 Mohamed, H. F., Mahmoud, A. A., Alatawi, A., Hegazy, M. H., Astatkie, T. and Said-Al Ahl, H. A. (2018). Growth and essential oil responses of Nepeta species to potassium humate and harvest time. Acta Physiologiae Plantarum.40, 1-8. https:// doi.org/ 10.1007/s11738-018-2778-5. Mohammed, M. H., Abd-Alrahman, H. A., Abdel-Kader, H. H., & Aboud, F. S. (2021). Effect of potassium humate and levels of potassium fertilization on growth, yield and nutritional status of tomato plants. Journal of Horticultural Sciences &Ornamental Plants. 13(2): 124-133. DOI: 10.5829/idosi.jhsop.2021.124.133 Mousavi, S. A. H., Barzegar, T., Nekounam, F., Ghahremani, Z., & Khani, A. (2023). The effect of humic acid on physiological characteristics, antioxidant activity and yield of Cape gooseberry (Physalis peruviana L.) under deficit irrigation. Journal of Plant Process and Function. 12(54): 171-186. (In persian). https://doi.org/10.22067/jhs.2023.80428.1226 Muscolo, A., Sidari, M. and Nardi, S. (2013). Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. Journal of Geochemical Exploration. 129: 57-63. https://doi.org/10.1016/j.gexplo.2012.10.012 Nardi, S., Pizzeghello, D., Schiavon, M. and Ertani, A. (2016). Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola. 73(1): 18-23. https://doi.org/10.1590/0103-9016-2015-0006 Nejat, N., Valdiani, A., Cahill, D., Tan, Y. H., Maziah, M. and Abiri, R. (2015). Ornamental exterior versus therapeutic interior of Madagascar periwinkle (Catharanthus roseus): the two faces of a versatile herb. The Scientific World Journal. 2015(1): 982412. https://doi.org/10.1155/2015/982412 Noroozisharaf, A. and Kaviani, M. (2018). Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiology and Molecular Biology of Plants. 24(3): 423-431. https://doi.org/10.1007/s12298-018-0510-y Nourihoseini, S. M., Khorassani, R., Astaraei, A., Rezvani Moghadam, P. and Zabihi, H. (2016). Effect of different fertilizer resources and humic acid on some morphological criteria, yield and antioxidant activity of black zira seed (Bunium persicum Boiss). Applied Field Crops Research. 29(4): 88-105. (In persian) Omidbaigi, R. (2005). Production and processing of medicinal plants. Astan Quds Publication, Tehran, Iran, 348 pp. (In persian) Omidbaigi, R. (2013). Production and processing of medicinal plants. Astan Quds Publication, Tehran, (In Persian). Omidbeigi, R. (2007). Production and processing of medicinal plants. Astane Ghodse Razavi, Mashhad. (In Persian). Ozfidan-Konakci, C., Yildiztugay, E., Bahtiyar, M. and Kucukoduk, M. (2018). The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress. Ecotoxicology and Environmental Safety. 155: 66-75. https://doi.org/10.1016/j.ecoenv.2018.02.071 Pazoki, A.R., (2012). Effect of lead, azospirillum and humic acid on chlorophyll content, root and shoot dry weight in rapeseed. Journal of Crop Production Research (environmental stresses in plant sciences). 4(2): 173-184. (In persian) Piromyou, P., Buranabanyat, B., Tantasawat, P., Tittabutr, P., Boonkerd, N. and Teaumroong, N. (2011). Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. European Journal of Soil Biology. 47(1): 44-54. https://doi.org/10.1016/j.ejsobi.2010.11.004 Pizzeghello, D., Nicolini, G. and Nardi, S. (2001). Hormone‐like activity of humic substances in Fagus sylvaticae forests. New Phytologist. 151(3): 647-657. https://doi.org/10.1046/j.0028-646x.2001.00223.x Rady, M. R. (2019). Plant Biotechnology and Medicinal Plants. Springer International Publishing. Rahi, A., Davoodi, F. M., Azizi, F. and Habibi, D. (2012). The study examIned the effects of different amounts of humic acid and response curves In the Dactylis glomerata. 8 (3), 15-28. (In Persian) Rao, S. R. and Ravishankar, G. A. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnology Advances. 20(2): 101-153. https://doi.org/10.1016/S0734-9750(02)00007-1 Retab, Y., Selim, S. H., Matter, F., & Hassanein, M. (2022). Influence of sulphur, potassium humate and their interactions on growth, flowering and chemical constituents of roselle plant (Hibiscus sabdariffa). Fayoum Journal of Agricultural Research and Development. 36(1): 34-48. https:// doi.org/ 10.21608/fjard.2022.240921 Sánchez-Sánchez, A., Sánchez-Andreu, J., Juárez, M., Jordá, J., & Bermúdez, D. (2006). Improvement of iron uptake in table grape by addition of humic substances. Journal of Plant Nutrition. 29(2): 259-272. https://doi.org/10.1080/01904160500476087 Schiavon, M., Pizzeghello, D., Muscolo, A., Vaccaro, S., Francioso, O. and Nardi, S. (2010). High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). Journal of Chemical Ecology. 36: 662-669. https://doi.org/10.1007/s10886-010-9790-6 Shahbazi, K., & Besharati, H. (2013). Overview of the fertility status of agricultural soils in Iran. Journal of Land Management.1: 1-15. (In Persian). Sharif, M., Khattak, R. A. and Sarir, M. S. (2002). Effect of different levels of lignitic coal derived humic acid on growth of maize plants. Communications in Soil Science and Plant Analysis. 33(19-20): 3567-3580. Shrivastava, P. and Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences. 22(2): 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001 Silva, E. M., Souza, J. N. S., Rogez, H., Rees, J. F. and Larondelle, Y. (2007). Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chemistry. 101(3): 1012-1018. https://doi.org/10.1016/j.foodchem.2006.02.055 Singleton, V.L., Orthofer, R. and Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology. 299: 152-178. Suzuki, N., Koussevitzky, S. H. A. I., Mittler, R. O. N. and Miller, G. A. D. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment. 35(2): 259-270. https://doi.org/10.1111/j.1365-3040.2011.02336.x Taha, R., Seleiman, M. F., Alotaibi, M., Alhammad, B. A., Rady, M. M. and HA Mahdi, A. (2020). Exogenous potassium treatments elevate salt tolerance and performances of Glycine max L. by boosting antioxidant defense system under actual saline field conditions. Agronomy. 10(11): 1741. https://doi.org/10.3390/agronomy10111741 Theunissen, J., Ndakidemi, P. A. and Laubscher, C. P. (2010). Potential of vermicompost produced from plant waste on the growth and nutrient status in vegetable production. International Journal of the Physical Sciences. 5(13): 1964-1973. https://doi.org/10.5897/IJPS.9000448 Thomas, P. A., Woodward, J., Stegelin, F. and Pennisi, B. (2012). A guide for commercial production of vinca. Biulletin, 1219: 1-27. Trevisan, S., Francioso, O., Quaggiotti, S. and Nardi, S. (2010). Humic substances biological activity at the plant-soil interface: from environmental aspects to molecular factors. Plant Signaling & Behavior. 5(6): 635-643. https://doi.org/10.4161/psb.5.6.11211 | ||
آمار تعداد مشاهده مقاله: 214 تعداد دریافت فایل اصل مقاله: 117 |