اثر پوشش کیتوزان و نانوفیبر کیتوزان بر کیفیت و انبارمانی میوهی توتفرنگی رقم پاروس | ||
دوفصلنامه فنآوری تولیدات گیاهی | ||
مقاله 1، دوره 16، شماره 1، مرداد 1403، صفحه 1-18 اصل مقاله (1.3 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22084/ppt.2024.28675.2118 | ||
نویسندگان | ||
مریم چوبتاشانی1؛ محمد سیاری* 2؛ مصطفی کرمی3 | ||
1دانشآموخته کارشناسی ارشد، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران | ||
2دانشیار، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران | ||
3دانشیار، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی بهار، دانشگاه بوعلی سینا، همدان، ایران | ||
چکیده | ||
توتفرنگی بهدلیل داشتن بافت نرم و حساسیت فراوان به پاتوژنها عمر انباری کوتاهی دارد. ازجمله راههای نامناسب برای افزایش ماندگاری آن استفاده از ترکیبات شیمیایی مصنوعی و ضدقارچی میباشد که اثر سوء بر سلامت مصرفکننده و محیطزیست بر جا میگذارند. این پژوهش جهت بررسی اثر پوششدهی با کیتوزان و نانوفیبر کیتوزان بر عمر انباری و برخی ویژگیهای کمی و کیفی میوهی توتفرنگی رقم پاروس طی نگهداری در انبار سرد، در قالب یک آزمایش فاکتوریل بر پایه طرح کاملاً تصادفی با دو فاکتور و سه تکرار انجام گرفت. فاکتور اول تیمارها (بهصورت 2 دقیقه غوطهوری) در 5 سطح شامل شاهد خشک، آب مقطر، کیتوزان 0.5 درصد، نانوفیبر کیتوزان 0.2 درصد و نانوفیبر کیتوزان 0.5 درصد و فاکتور دوم زمان انبارداری در 5 سطح شامل: صفر، 5، 10، 15 و 20 روز بود. نمونهها پس از خشک شدن، در ظروف یکبار مصرف پلاستیکی بستهبندی و در دمای 4 درجه سلسیوس و رطوبت نسبی 85 تا 90 درصد نگهداری شدند. نتایج نشان داد میوههای تیمار شده با 0.5 درصد نانوفیبر کیتوزان، سفتی بافت، TSS، ویتامین ث، آنتوسیانین و فنل کل و فعالیت آنتیاکسیدانی بالاتری نسبت به میوههای شاهد طی دوره انبار داشتند. همچنین درصد پوسیدگی در میوههای تیمار شده با 0.5 و 0.2 درصد نانوفیبر کیتوزان بهترتیب 61 درصد و 55 درصد کمتر از میوههای شاهد بود. براساس نتایج این مطالعه، پوشش نانوفیبر کیتوزان میتواند بهعنوان یک پوشش دوستدار محیط زیست در کنترل پوسیدگی توتفرنگی و حفظ کیفیت آن در انبار مورداستفاده قرار بگیرد. | ||
کلیدواژهها | ||
فعالیت آنتیاکسیدانی؛ کیفیت ظاهری؛ پوسیدگی میوه؛ محتوای فنل کل | ||
مراجع | ||
Aday, M. S., & Caner, C. (2011). The applications of active packaging and chlorine dioxide for extended shelf life of fresh strawberries. Packaging Technology and Science, 24(3), 123-136 https://doi.org/10.1002/pts.918. Brasil, I. M., Gomes, C., Puerta-Gomez, A., Castell-Perez, M. E., & Moreira, R. G. (2012). Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. LWT-Food Science and Technology. 47(1), 39-45. https://doi.org/10.1016/j.lwt.2012.01.005 Chen, F., Liu, H., Yang, H., Lai, S., Cheng, X., Xin, Y., & Bu, G. (2011). Quality attributes and cell wall properties of strawberries (Fragaria annanassa Duch.) under calcium chloride treatment. Food Chemistry. 126(2), 450-459. https://doi.org/10.1016/j.foodchem.2010.11.009 Cissé, M., Polidori, J., Montet, D., Loiseau, G., & Ducamp-Collin, M. N. (2015). Preservation of mango quality by using functional chitosan-lactoperoxidase systems coatings. Postharvest Biology and Technology. 101, 10-14. https://doi.org/10.1016/j.postharvbio.2014.11.003 Comabella, E., and Lara Ayala, I. (2013). Cell wall disassembly and post-harvest deterioration of Sweetheart sweet cherry fruit: involvement of enzymic and non-enzymic factors. Pure and Applied Chemical Sciences.1,1-18. https://doi.org/10.12988/pacs.2013.321 Cong, F., Zhang, Y., & Dong, W. (2007). Use of surface coatings with natamycin to improve the storability of Hami melon at ambient temperature. Postharvest Biology and Technology. 46(1), 71-75. https://doi.org/10.1016/j.postharvbio.2007.04.005 De Aquino, A. B., Blank, A. F., & de Aquino Santana, L. C. L. (2015). Impact of edible chitosan-cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chemistry. 171, 108-116. https://doi.org/10.1016/j.foodchem.2014.08.077 De Moura, C. M., de Moura, J. M., Soares, N. M., & de Almeida Pinto, L. A. (2011). Evaluation of molar weight and deacetylation degree of chitosan during chitin deacetylation reaction: used to produce biofilm. Chemical Engineering and Processing: Process Intensification. 50(4), 351-355. https://doi.org/10.1016/j.cep.2011.03.003 Duan, J., Wu, R., Strik, B. C., & Zhao, Y. (2011). Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biology and Technology. 59(1), 71-79. https://doi.org/10.1016/j.postharvbio.2010.08.006 Elsabee, M. Z., & Abdou, E. S. (2013). "Chitosan based edible films and coatings: A review. Materials Science and Engineering: C. 33(4), 1819-1841. https://doi.org/10.1016/j.msec.2013.01.010 Eshghi, S., Hashemi, M., Mohammadi, A., Badii, F., Mohammadhoseini, Z., & Ahmadi, K. (2014). Effect of nanochitosan-based coating with and without copper loaded on physicochemical and bioactive components of fresh strawberry fruit (Fragaria x ananassa Duchesne) during storage. Food and Bioprocess Technology. 7(8), 2397-2409. https://doi.org/10.1007/s11947-014-1281-2 Galvis‐Sánchez, A. C., Fonseca, S. C., Morais, A. M. M. B., & Malcata, F. X. (2003). Physicochemical and sensory evaluation of 'Rocha'pear following controlled atmosphere storage. Journal of Food Science. 68(1), 318-327. https://doi.org/10.1111/j.1365-2621.2003.tb14159.x Gao, Y., Kan, C., Chen, M., Chen, C., Chen, Y., Fu, Y., Wan, C. & Chen, J. (2018). Effects of chitosan-based coatings enriched with cinnamaldehyde on Mandarin fruit cv. Ponkan during room-temperature storage. Coatings, 8(10), 372. https://doi.org/10.3390/coatings8100372 González-Saucedo, A., Barrera-Necha, L. L., Ventura-Aguilar, R. I., Correa-Pacheco, Z. N., Bautista-Baños, S., & Hernández-López, M. (2019). Extension of the postharvest quality of bell pepper by applying nanostructured coatings of chitosan with Byrsonima crassifolia extract (L.) Kunth. Postharvest Biology and Technology, 149, 74-82. https://doi.org/10.1016/j.postharvbio.2018.11.019 Jiang, X., Lin, H., Shi, J., Neethirajan, S., Lin, Y., Chen, Y., Wang, H. & Lin, Y. (2018). Effects of a novel chitosan formulation treatment on quality attributes and storage behavior of harvested litchi fruit. Food Chemistry. 252, 134-141. https://doi.org/10.1016/j.foodchem.2018.01.095 Jongsri, P., Wangsomboondee, T., Rojsitthisak, P., & Seraypheap, K. (2016). Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. LWT-Food Science and Technology. 73, 28-36. https://doi.org/10.1016/j.lwt.2016.05.038 Kelebek, H., Selli, S., Canbas, A., & Cabaroglu, T. (2009). HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan. Microchemical Journal. 91(2), 187-192. https://doi.org/10.1016/j.microc.2008.10.008 Khaliq, G., Mohamed, M. T. M., Ali, A., Ding, P., & Ghazali, H. M. (2015). Effect of gum arabic coating combined with calcium chloride on physico-chemical and qualitative properties of mango (Mangifera indica L.) fruit during low temperature storage. Scientia Horticulturae. 190, 187-194. https://doi.org/10.1016/j.scienta.2015.04.020 Kou, X., He, Y., Li, Y., Chen, X., Feng, Y., & Xue, Z. (2019). Effect of abscisic acid (ABA) and chitosan/nano-silica/sodium alginate composite film on the color development and quality of postharvest Chinese winter jujube (Zizyphus jujuba Mill. cv. Dongzao). Food Chemistry. 270, 385-394. https://doi.org/10.1016/j.foodchem.2018.06.151 Kumar, P., Sethi, S., Sharma, R. R., Srivastav, M., & Varghese, E. (2017). Effect of chitosan coating on postharvest life and quality of plum during storage at low temperature Scientia Horticulturae. 226, 104-109. https://doi.org/10.1016/j.scienta.2017.08.037 Li, Y. N., Ye, Q. Q., Hou, W. F., & Zhang, G. Q. (2018). Development of antibacterial ε-polylysine/chitosan hybrid films and the effect on citrus. International journal of Biological Macromolecules. 118: 2051-2056. https://doi.org/10.1016/j.ijbiomac.2018.07.074 Maftoonazad, N., & Ramaswamy, H. S. (2005). Postharvest shelf-life extension of avocados using methyl cellulose-based coating. LWT-Food Science and Technology. 38(6), 617-624. https://doi.org/10.1016/j.lwt.2004.08.007 Maftoonazad, N., Badii, F., & Shahamirian, M. (2013). Recent innovations in the area of edible films and coatings. Recent Patents on Food, Nutrition and Agriculture. 5(3), 201-213. https://doi.org/10.2174/2212798405666131129151640 Mannozzi, C., Cecchini, J. P., Tylewicz, U., Siroli, L., Patrignani, F., Lanciotti, R., & Romani, S. (2017). Study on the efficacy of edible coatings on quality of blueberry fruits during shelf-life. LWT-Food Science and Technology. 85, 440-444. https://doi.org/10.1016/j.lwt.2016.12.056 Mannozzi, C., Tylewicz, U., Chinnici, F., Siroli, L., Rocculi, P., Dalla Rosa, M., & Romani, S. (2018). Effects of chitosan based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage. Food chemistry. 251, 18-24. https://doi.org/10.1016/j.foodchem.2018.01.015 Melo, N.F.C.B., de MendonçaSoares, B.L., Diniz, K.M., Leal, C.F., Canto, D., Flores, M.A., da Costa Tavares-Filho, J.H., Galembeck, A., Stamford, T.L.M., Stamford-Arnaud, T.M. & Stamford, T.C.M. (2018). Effects of fungal chitosan nanoparticles as eco-friendly edible coatings on the quality of postharvest table grapes. Postharvest Biology and Technology. 139, 56-66. https://doi.org/10.1016/j.postharvbio.2018.01.014 Meyers, K. J., Watkins, C. B., Pritts, M. P., and Liu, R. H. (2003). Antioxidant and antiproliferative activities of strawberries. Journal of Agricultural and Food Chemistry. 51(23), 6887-6892. https://doi.org/10.1021/jf034506n Mohammadi, A., Hashemi, M., & Hosseini, S. M. (2015). Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biology and Technology. 110, 203-213. https://doi.org/10.1016/j.postharvbio.2015.08.019 Nair, M. S., Saxena, A., & Kaur, C. (2018). Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.). Food Chemistry. 240, 245-252. https://doi.org/10.1016/j.foodchem.2017.07.122 Obianom, C., Romanazzi, G., & Sivakumar, D. (2019). Effects of chitosan treatment on avocado postharvest diseases and expression of phenylalanine ammonia-lyase, chitinase and lipoxygenase genes. Postharvest Biology and Technology. 147, 214-221. https://doi.org/10.1016/j.postharvbio.2018.10.004 Ortiz-Duarte, G., Pérez-Cabrera, L. E., Artés-Hernández, F., & Martínez-Hernández, G. B. (2019). Ag-chitosan nanocomposites in edible coatings affect the quality of fresh-cut melon. Postharvest Biology and Technology. 147, 174-184. https://doi.org/10.1016/j.postharvbio.2018.09.021 Perdones, A., Sánchez-González, L., Chiralt, A., & Vargas, M. (2012). Effect of chitosan-lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest biology and technology, 70, 32-41. https://doi.org/10.1016/j.postharvbio.2012.04.002 Perinelli, D.R., Fagioli, L., Campana, R., Lam, J.K., Baffone, W., Palmieri, G.F., Casettari, L. & Bonacucina, G. (2018). Chitosan-based nanosystems and their exploited antimicrobial activity. European Journal of Pharmaceutical Sciences, 117, 8-20. https://doi.org/10.1016/j.ejps.2018.01.046 Petriccione, M., Mastrobuoni, F., Pasquariello, M. S., Zampella, L., Nobis, E., Capriolo, G., & Scortichini, M. (2015). Effect of chitosan coating on the postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. Foods, 4(4), 501-523. https://doi.org/10.3390/foods4040501 Reque, P. M., Steffens, R. S., Jablonski, A., Flôres, S. H., Rios, A. D. O., & de Jong, E. V. (2014). Cold storage of blueberry (Vaccinium spp.) fruits and juice: Anthocyanin stability and antioxidant activity. Journal of Food Composition and Analysis. 33(1), 111-116. https://doi.org/10.1016/j.jfca.2013.11.007 Resende, N. S., Gonçalves, G. A. S., Reis, K. C., Tonoli, G. H. D., & Boas, E. V. B. V. (2018). Chitosan/Cellulose Nanofibril Nanocomposite and Its Effect on Quality of Coated Strawberries. Journal of Food Quality. 1-13. https://doi.org/10.1155/2018/1727426 Romanazzi, G., Feliziani, E., Santini, M., & Landi, L. (2013). Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest biology and technology, 75, 24-27. https://doi.org/10.1016/j.postharvbio.2012.07.007 Roussos, P. A., Sefferou, V., Denaxa, N. K., Tsantili, E., & Stathis, V. (2011). Apricot (Prunus armeniaca L.) fruit quality attributes and phytochemicals under different crop load. Scientia Horticulturae. 129(3), 472-478. https://doi.org/10.1016/j.scienta.2011.04.021 Salehi, F., & Kashaninejad, M. (2018). Mass transfer and color changes kinetics of infrared-vacuum drying of grapefruit slices. International Journal of Fruit Science, 18(4), 394-409. https://doi.org/10.1080/15538362.2018.1458266 Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011). Use of essential oils in bioactive edible coatings: a review. Food Engineering Reviews. 3(1), 1-16. https://doi.org/10.1007/s12393-010-9031-3 Shi, S., Wang, W., Liu, L., Wu, S., Wei, Y., & Li, W. (2013). Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. Journal of Food Engineering. 118(1): 125-131. https://doi.org/10.1016/j.jfoodeng.2013.03.029 Silva, W.B., Silva, G.M.C., Santana, D.B., Salvador, A.R., Medeiros, D.B., Belghith, I., da Silva, N.M., Cordeiro, M.H.M. & Misobutsi, G.P. (2018). Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food chemistry. 242, 232-238. https://doi.org/10.1016/j.foodchem.2017.09.052 Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. https://doi.org/10.5344/ajev.1965.16.3.144 Sogvar, O. B., Saba, M. K., & Emamifar, A. (2016). Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biology and Technology. 114, 29-35. https://doi.org/10.1016/j.postharvbio.2015.11.019 Song, H., Yuan, W., Jin, P., Wang, W., Wang, X., Yang, L., & Zhang, Y. (2016). Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biology and Technology. 119, 41-48. https://doi.org/10.1016/j.postharvbio.2016.04.015 Song, Z., Li, F., Guan, H., Xu, Y., Fu, Q., and Li, D. (2017). Combination of nisin and ε-polylysine with chitosan coating inhibits the white blush of fresh-cut carrots. Food Control. 74, 34-44. https://doi.org/10.1016/j.foodcont.2016.11.026 Tian, F., Chen, W., Cai'E, W., Kou, X., Fan, G., Li, T., and Wu, Z. (2018). Preservation of ginkgo (Ginkgo biloba L.) seeds by coating with chitosan/nano-TiO2 and chitosan/nano-SiO2 films. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2018.12.177 Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2006). Quality of cold-stored strawberries as affected by chitosan-oleic acid edible coatings. Postharvest Biology and Technology. 41(2),164-171. https://doi.org/10.1016/j.postharvbio.2006.03.016 Vasile, C., Darie, R.N., Cheaburu-Yilmaz, C.N., Pricope, G.M., Bračič, M., Pamfil, D., Hitruc, G.E. & Duraccio, D. (2013). Low density polyethylene-chitosan composites. Composites Part B: Engineering. 55, 314-323. https://doi.org/10.1016/j.compositesb.2013.06.008 Ventura-Aguilar, R. I., Bautista-Baños, S., Flores-García, G., & Zavaleta-Avejar, L. (2018). Impact of chitosan based edible coatings functionalized with natural compounds on Colletotrichum fragariae development and the quality of strawberries. Food Chemistry. 262,142-149. https://doi.org/10.1016/j.foodchem.2018.04.063 Wang, S. Y., & Gao, H. (2013). Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT-Food Science and Technology. 52 (2), 71-79. https://doi.org/10.1016/j.lwt.2012.05.003 Xin, Y., Chen, F., Lai, S., & Yang, H. (2017). Influence of chitosan-based coatings on the physicochemical properties and pectin nanostructure of Chinese cherry. Postharvest Biology and Technology. 133, 64-71. https://doi.org/10.1016/j.postharvbio.2017.06.010 Xoca-Orozco, L.Á., Cuellar-Torres, E.A., González-Morales, S., Gutiérrez-Martínez, P., López-García, U., Herrera-Estrella, L., Vega-Arreguín, J. & Chacón-López, A. (2017). Transcriptomic analysis of avocado hass (Persea americana Mill) in the interaction system fruit-chitosan-Colletotrichum. Frontiers in Plant Science. 8, 956. https://doi.org/10.3389/fpls.2017.00956 Xu, W. T., Huang, K. L., Guo, F., Qu, W., Yang, J. J., Liang, Z. H., & Luo, Y. B. (2007). Postharvest grapefruit seed extract and chitosan treatments of table grapes to control Botrytis cinerea". Postharvest Biology and Technology. 46 (1), 86-94. https://doi.org/10.1016/j.postharvbio.2007.03.019 Zahedi, S. M., Ehteshami, S., and Aazami, M. A. (2017). Effect of Edible Chitosan Coating on some Qualitative Characteristics and Storage Life of Mango. Plant Production Technology. 9(1): 143-154. https://doi.org/10.22084/ppt.2017.2241Zivanovic, S., Chi, S., and Draughon, A. F. (2005). Antimicrobial activity of chitosan films enriched with essential oils. Journal of Food Science. 70(1), M45-M51. https://doi.org/10.1111/j.1365-2621.2005.tb09045.x | ||
آمار تعداد مشاهده مقاله: 345 تعداد دریافت فایل اصل مقاله: 294 |