- Johnson, S.M., Optimal two‐and three‐stage production schedules with setup times included. Naval research logistics quarterly, 1954. 1(1): p. 61-68.
- Abdel-Basset, M., et al., A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem. Future Generation Computer Systems, 2018. 85.
- الفت، لعیا (2017). حداقل دیرکرد در زمانبندی مسائل جریان کارگاهی با موعد تحویل میانی. پژوهشهای نوین در تصمیمگیری، دوره 2⸲ شماره ۳⸲ صفحه ۲۵-۴۷.
- علاقهبندها (2018). مدلسازی زمانبندی و اندازه انباشته اقتصادی در جریان کارگاهی جایگشتی توزیعشده با کارخانههای متفاوت⸲ پژوهشهای نوین در تصمیمگیری، دوره ۳⸲ شماره ۳⸲ صفحه ۱۲۹-۱۵۵.
- Hall, N.G. and C. Sriskandarajah, A survey of machine scheduling problems with blocking and no-wait in process. Operations research, 1996. 44(3): p. 510-525.
- Hartmanis, J., Computers and intractability: a guide to the theory of np-completeness (michael r. garey and david s. johnson). Siam Review, 1982. 24(1): p. 90.
- Pourhejazy, P., et al., Improved beam search for optimizing no-wait flowshops with release times. IEEE Access, 2020. 8: p. 148100-148124.
- Pan, Q.-K., M.F. Tasgetiren, and Y.-C. Liang, A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Computers & Operations Research, 2008. 35(9): p. 2807-2839.
- Riahi, V. and M. Kazemi, A new hybrid ant colony algorithm for scheduling of no-wait flowshop. Operational Research, 2018. 18(1): p. 55-74.
- Gao, J., M. Gen, and L. Sun, Scheduling jobs and maintenances in flexible job shop with a hybrid genetic algorithm. Journal of Intelligent Manufacturing, 2006. 17(4): p. 493-507.
- Miyata, H.H., M.S. Nagano, and J.N. Gupta, Integrating preventive maintenance activities to the no-wait flow shop scheduling problem with dependent-sequence setup times and makespan minimization. Computers & Industrial Engineering, 2019. 135: p. 79-104.
- قندی بیدگلی، سمیه و بنرودی، ریحانه (2023). مدلسازی ریاضی و حل مسأله زمانبندی جریان کارگاهی انعطافپذیر با جریانهای معکوس و محدودیت دسترسی به ماشینها. نشریه پژوهشهای مهندسی صنایع در سیستمهای تولید, دوره ۱۰⸲ شماره ۲۱⸲ صفحه ۱-۱۷.
- Chen, D.-S., R.G. Batson, and Y. Dang, Applied integer programming. Hoboken, NJ, 2010.
- Branda, A., et al., Metaheuristics for the flow shop scheduling problem with maintenance activities integrated. Computers & Industrial Engineering, 2021. 151: p. 106989.
- Wang, L., Q.-K. Pan, and M.F. Tasgetiren, Minimizing the total flow time in a flow shop with blocking by using hybrid harmony search algorithms. Expert Systems with Applications, 2010. 37(12): p. 7929-7936.
- Geem, Z.W., J.H. Kim, and G.V. Loganathan, A new heuristic optimization algorithm: harmony search. simulation, 2001. 76(2): p. 60-68.
- Nagano, M.S. and H.H. Miyata, Review and classification of constructive heuristics mechanisms for no-wait flow shop problem. The International Journal of Advanced Manufacturing Technology, 2016. 86: p. 2161-2174.
- Gangadharan, R. and C. Rajendran, Heuristic algorithms for scheduling in the no-wait flowshop. International Journal of Production Economics, 1993. 32(3): p. 285-290.
- Rajendran, C., A no-wait flowshop scheduling heuristic to minimize makespan. Journal of the Operational Research Society, 1994. 45(4): p. 472-478.
- Nawaz, M., E.E. Enscore Jr, and I. Ham, A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 1983. 11(1): p. 91-95.
- Li, X., Q. Wang, and C. Wu, Heuristic for no-wait flow shops with makespan minimization. International Journal of Production Research, 2008. 46(9): p. 2519-2530.
- Framinan, J.M. and R. Leisten, An efficient constructive heuristic for flowtime minimisation in permutation flow shops. Omega, 2003. 31(4): p. 311-317.
- Li, X. and C. Wu, Heuristic for no-wait flow shops with makespan minimization based on total idle-time increments. Science in China Series F: Information Sciences, 2008. 51(7): p. 896-909.
- Rajendran, C. and H. Ziegler, An efficient heuristic for scheduling in a flowshop to minimize total weighted flowtime of jobs. European Journal of Operational Research, 1997. 103(1): p. 129-138.
- Deng, G., H. Yang, and S. Zhang, An enhanced discrete artificial bee colony algorithm to minimize the total flow time in permutation flow shop scheduling with limited buffers. Mathematical Problems in Engineering, 2016. 2016.
- Mahdavi, M., M. Fesanghary, and E. Damangir, An improved harmony search algorithm for solving optimization problems. Applied mathematics and computation, 2007. 188(2): p. 1567-1579.
- قندی بیدگلی، سمیه و امینی، مرضیه (2021). ارائه مدل زمانبندی چندعاملی در محیط جریان کارگاهی با فرض زوالپذیری کارها، زمانهای آمادهسازی وابسته به توالی و زمان آزادسازی کارها با استفاده از الگوریتم ازدحام ذرات چندهدفه. نشریه پژوهشهای مهندسی صنایع در سیستمهای تولید⸲ دوره ۹⸲ شماره ۱۸⸲ صفحه ۵۹-۷۹.
- Vallada, E., R. Ruiz, and J.M. Framinan, New hard benchmark for flowshop scheduling problems minimising makespan. European Journal of Operational Research, 2015. 240(3): p. 666-677.
- Reeves, C.R. Genetic algorithms and neighbourhood search. in Evolutionary Computing: AISB Workshop Leeds, UK, April 11–13, 1994 Selected Papers. 2005. Springer.
- Taillard, E., Benchmarks for basic scheduling problems. european journal of operational research, 1993. 64(2): p. 278-285.
- Lin, S.-W. and K.-C. Ying, Optimization of makespan for no-wait flowshop scheduling problems using efficient matheuristics. Omega, 2016. 64: p. 115-125.
- Kruskal, W.H. and W.A. Wallis, Use of ranks in one-criterion variance analysis. Journal of the American statistical Association, 1952. 47(260): p. 583-621.
- Derrac, J., et al., A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 2011. 1(1): p. 3-18.
|