تأثیر تنش کمآبی بر غلظت رنگیزههای فتوسنتزی و فعالیت کمی برخی آنتیاکسیدانها در گندم | ||
دوفصلنامه فنآوری تولیدات گیاهی | ||
دوره 14، شماره 1، شهریور 1401، صفحه 87-95 اصل مقاله (883.05 K) | ||
نوع مقاله: مقاله کوتاه پژوهشی | ||
شناسه دیجیتال (DOI): 10.22084/ppt.2023.25939.2071 | ||
نویسندگان | ||
اکرم قدیری1؛ سدابه جهانبخش* 2؛ سیده یلدا رئیسی ساداتی3 | ||
1دانشآموخته کارشناسیارشد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
2استاد، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
3دانشآموخته دکتری، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
چکیده | ||
هدف از این مطالعه بررسی تأثیر سطوح مختلف کمآبی روی برخی از خصوصیات بیوشیمیایی در مرحله گیاهچهای سه رقم گندم زراعی میباشد. به این منظور آزمایشی بهصورت فاکتوریل بر پایه طرح کاملاً تصادفی در گلخانه دانشگاه محقق اردبیلی با دو فاکتور، فاکتور اول تنش کمآبی (35، 60 و 85 درصد ظرفیت زراعی (شاهد)) و فاکتور دوم ارقام گندم (پیشگام، پیشتاز و بهاران) در سه تکرار انجام شد. تنش کمآبی در مرحله سه برگی گندم اعمال شد و بعد از 10 روز، نمونهبرداری از گیاهچهها بهمنظور بررسی غلظت رنگیزههای فتوسنتزی و پارامترهای بیوشیمیایی انجام گرفت. نتایج نشان داد با افزایش تنش کمآبی فعالیت آنزیمهای آنتیاکسیدانی کاتالاز، پراکسیداز و پلیفنل اکسیداز و پرولین افزایش یافت. بیشترین و کمترین غلظت رنگیزههای فتوسنتزی بهترتیب به ارقام بهاران و پیشگام به شرایط عدم تنش و تنش شدید کمآبی تعلق داشت. محتوای کاروتنوئید و پروتئین کل محلول در ارقام بهاران و پیشگام گندم تحت شرایط کنترل (شاهد) بیشتر بود. بهطورکلی بهنظر میرسد رقم بهاران بهدلیل داشتن تحمل بالا نسبت به تنش در بین سایر ارقام موردبررسی و نیز با افزایش فعالیت آنزیمهای آنتیاکسیدان و متابولیتهای سازگاری موجب کاهش اثرات مخرب کمآبی شده است. | ||
کلیدواژهها | ||
اثرات مخرب؛ پراکسیداز؛ پروتئین کل محلول؛ رقم بهاران | ||
مراجع | ||
رئیسیساداتی، س. ی.، جهانبخش گدهکهریز، س.، عبادی، ع. و صدقی، م. 1400. تأثیر نانوذره اکسیدروی بر برخی ویژگیهای بیوشیمیایی و مورفولوژیکی گندم در شرایط خشکی. دانش کشاورزی و تولید پایدار، 31 (2): 233-250. Arnon, A. N. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal, 23: 112-121. Ahmadi, J., Pour-Aboughadareh, A., Ourang, S. F., Mehrabi, A. A. and Siddique, K. H. 2018. Wild relatives of wheat: Aegilops–Triticum accessions disclose differential antioxidative and physiological responses to water stress. Acta Physiologiae Plantarum, 40 (5): 1-14. Anjum, S. A., Ashraf, U., Tanveer, M., Khan, I., Hussain, S., Shahzad, B., Zohaib, A., Abbas, F., Saleem, M. F. and Ali, I. 2017. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in Plant Science, 8 (69): 1-12. Bradford, M. M. 1976. A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248. Bates, L., Waldrem, R. and Teare, I. 1973. Rapid determination of free praline for water stress studies. Plant and Soil, 39: 205-207. Chance, B. and Maehly, A. C. 1955. Assay of catalases and peroxidases. Method Enzymol, 11: 764-755. Food and Agriculture Organization of United Nations (FAO), 2019. World food situation, FAO cereal supply and demand brief, 6 December, Available at: http://www.fao.org/ worldfoodsituation/ csdb/en/. Fleta‐Soriano, E., Díaz, L., Bonet, E. and Munné‐Bosch, S. 2017. Melatonin may exert a protective role against drought stress in maize. Journal of Agronomy and Crop Science, 203 (4): 286-294. Foroutan, L., Solouki, M., Abdossi, V. and Fakheri, B. A. 2018. The effects of zinc oxide nanoparticles on enzymatic and osmoprotectant alternations in different Moringa peregrina populations under drought stress. International Journal of Basic Science in Medicine, 3 (4): 178-187. Goufo, P., Moutinho-Pereira, J. M., Jorge, T. F., Correia, C. M., Oliveira, M. R., Rosa, E. A., António, C. and Trindade, H. 2017. Cowpea (Vigna unguiculata L. Walp.) metabolomics: Osmoprotection as a physiological strategy for drought stress resistance and improved yield. Frontiers in Plant Science, 8 (586): 1-22. Gupta, D. K., Palma, J. M. and Corpas, F. J. 2018. Antioxidants and Antioxidant Enzymes in Higher Plants. Springer. Hosseinzadeh, S., Amiri, H. and Ismaili, A. 2016. Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynthetica, 54 (1): 87-92. Kar, M. and Mishra, D. 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology, 57: 315-319. Kazerani, B., Navabpour, S., Sabouri, H., Ramezanpour, S. S., Zaynali Nezhad, K. and Eskandari, A. 2019. Evaluation of proline content and enzymatic defense mechanism in response to drought stress in rice. Plant Physiology, 9 (2): 2749-2757. Marcin´ska, I., Czyczyło-Mysza, I., Skrzypek, E., Filek, M., Grzesiak, S., Grzesiak, M. T., Janowiak, F., Hura, T., Dziurka, M., Dziurka, K., Nowakowska, A. and Quarrie, S. A. 2013. Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Plant Physiology, 35: 451-461.Mejri, M., Siddique, K. H., Saif, T., Abdelly, C. and Hessini, K. 2016. Comparative effect of drought duration on growth, photosynthesis, water relations, and solute accumulation in wild and cultivated barley species. Journal of Plant Nutrition and Soil Science, 179 (3): 327-335. Maghsoudi, K., Emam, Y., Niazi, A., Pessarakli, M. and Arvin, M. J. 2018. P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. Journal of Plant Interactions, 13 (1): 461-471. Miller, G., Suzuki, N. and Ciftci‐Yilmaz, S. 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell and Environment, 33: 453-467. Moharramnejad, S., Sofalian, O., Valizadeh, M., Asgari, A., Shiri, M. R. and Ashraf, M. 2019. Response of maize to field drought stress: Oxidative defense system, osmolytes’ accumulation and photosynthetic pigments. Pakistan Journal of Botany, 51 (3): 799-807. Naderi, S., Fakheri, B.-A., Maali-Amiri, R. and Mahdinezhad, N. 2020. Tolerance responses in wheat landrace Bolani are related to enhance metabolic adjustments under drought stress. Plant Physiology and Biochemistry, 150: 244-253. Rahbarian, R., Khavari-nejad, R., Ganjeali, A., Bagheri A. R. and Najafi, F. 2012. Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biologica Cracoviensia, 53: 47-56. Simova-Stoilova, L., Pecheva, D. and Kirova, E. 2020. Drought stress response in winter wheat varieties–changes in leaf proteins and proteolytic activities. Acta Botanica Croatica, 79 (2): 121-130. Sourour, A., Afef, O., Mounir, R. and Mongi, B. Y. 2017. A review: morphological, physiological, biochemical and molecular plant responses to water deficit stress. International Journal of Engineering Science, 6 (1): 1-4. Taran, N., Storozhenko, V., Svietlova, N., Batsmanova, L, Shvartau, V. and Kovalenko, M. 2017. Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Research Letters, 12 (1): 1-6. Wang, X., Liu, H., Yu, F., Hu, B., Jia, Y., Sha, H. and Zhao, H. 2019. Differential activity of the antioxidant defence system and alterations in the accumulation of osmolyte and reactive oxygen species under drought stress and recovery in rice (Oryza sativa L.) tillering. Scientific Reports, 9 (1): 1-11. | ||
آمار تعداد مشاهده مقاله: 272 تعداد دریافت فایل اصل مقاله: 232 |