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Abstract

In this paper, a mixed modeling approach for orthotropic laminated plates
is developed. By adopting Hellinger-Reissner functional and dimension
reduction method along the thickness, the governing equations were derived.
By considering other theories i.e. classical plate theory, first order shear
deformation theory and elasticity theory, the advantages of the current
work are illustrated with some numerical results. Excellent agreements
were observed by comparing the obtained results with three-dimensional
elasticity theory for laminated thick plates. In the presented method, shear
correction factor was not required for considering shear strain components.
Furthermore, finite element simulation was implemented in Abaqus software
by using two-dimensional shell elements and compared with obtained results.
It is seen that although finite element model predicts good results for dis-
placement field but it cannot provide any suitable results in thickness direction.

Nomenclature
D Elastic tensor ν Passion ratio
E Elastic modulus h Thickness
Ω Plate domain B Second plate dimension
s Displacement vector σ Stress tensor
f Force vector n Normal vector
a First plate dimension G Shear modulus

1. Introduction

In the recent decades, several plate and shell theories
have been proposed in the literature for predicting me-
chanical behavior of laminated panels. Classical plate
theory (CPT) and first order shear deformation the-
ory (FSDT) are two famous theories widely used by
other researchers. Based on Kirchhoff-Love assump-
tions, classical theory neglects the shear deformation,
so it leads to inaccurate results. The principal assump-
tion in CPT is that normal lines to the mid-plane be-

fore deformation remain straight and normal to the
plane after deformation. On the other hand, in FSDT
approach, the shear deformation components are not
neglected and are considered to be constant along the
thickness. However, this theory gives satisfactory re-
sults for practical cases and it is need to adopt the shear
correction factor for achieving more accurate results.
Determining shear correction factor is not always easy
for all cases and the well-known value 5/6 is suitable
only for homogenous plates.

The earlier investigations on the analysis of com-
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posite laminated plates with different theories can be
found in the good review paper of Khandan et al. [1].
Khandan et al. [1] focused on the accuracy and effi-
ciency of various theories in predicting transverse shear
strains and stresses. It was shown that in contrast to
higher-order shear deformation theory, common CPT
and FSDT are unable to obtain reasonable shear stress.
The higher-order shear theories are based on nonlinear
stress variation through the thickness and have been
advised by numerous researchers to avoid using shear
correction factors. However, some of these models do
not satisfy the continuity conditions of transverse shear
stresses at the layer interfaces for composite laminates.
As an example, Reddy and Kim [2] proposed a gen-
eral third order theory for functionally graded plates
by considering microstructure dependent length scale
parameter and showed that the third order shear de-
formation theory (TSDT), FSDT and CPT can be ob-
tained as special cases of the general third order theory.

On the other hand, the elasticity models obtain ex-
act representation without any simplifications but re-
quire heavy computational processing. Furthermore,
these models are impractical for engineering applica-
tions because the number of variables in these models
directly depend on the number of layers. One of the
best investigations was done by Pagano [3] for rect-
angular laminated plates with pined edges based on
three-dimensional elasticity theory. He compared the
elasticity solution with classical laminated plate theory
and showed that the accuracy of CPT depends upon
material properties, lamination geometry, and span to
depth ratio. Moreover, CPT shows slower convergence
for layered plates compared with exact solution.

The mixed variational approach is a powerful tool
based on the variational principles. This model was
firstly developed by Hellinger and then was improved
by Khandan et al. [1]. Reissner proposed a mixed
formulation as a tool to variationally derive the gov-
erning equilibrium and constitutive equations in terms
of independent variables [4]. The derivation of two-
dimensional models for bending and stretching of
thin three-dimensional elastic plates using variational
method was provided by Alessandrini et al. [5]. Wu
and Li [6] investigated bending behavior of simply
supported multilayered composite laminates and FGM
plates, using Reissner mixed variational theorem and
principle of virtual displacement based on finite layer
method. In other work, Wu et al. [7] developed
Reissner mixed variational theorem based on TSDT
and studied static analysis of simply supported multi-
layered composite and FGM plates under mechanical
loads. Carrera [8] used both mixed and classical theo-
ries to study the global and local responses of multilay-
ered orthotropic plates, and concluded that the Reiss-
ner mixed variational theorem based theories are supe-
rior to the principle of virtual displacement-based ones.
A generalized unified formulation (GUF) was devel-

oped by Demasi to investigate the Reissner mixed vari-
ational theorem-based theories, including mixed first-
order and higher-order shear deformation theory, zig-
zag, layerwise theories [9-13].

There are many publications which used dimension
reduction method for boundary value problems. Ac-
cording to Vogelius and Babuska [14], this method is
able to adopt and solve a (n + 1) dimensional bound-
ary value problem by replacing them with system of
equations in n dimensional space by considering lin-
ear combination of functions. Liu [15] used dimen-
sional reduction method for elasticity plate on an un-
bounded domain. He estimated error between exact
solution and reduced solution and showed the capabil-
ity of this method for analysis of plates. Various nu-
merical investigations used reduction approach based
on discretization methods such as finite element, finite
difference, etc. For instance, by adopting a mixed en-
hanced variational formulation and FSDT, Auricchio
and Sacco [16] presented a finite element method for
laminated composite plates with an accurate evalua-
tion of shear correction factor. Another mixed model
based on FSDT was presented by Daghia et al. [17]
by implementing a new quadratic four-node finite el-
ement from a hybrid stress formulation. Moleiro et
al [18] developed a layerwise finite element model in
a mixed least square formulation for static analysis of
multilayered composite plates and showed that pro-
posed method has very good agreement with three-
dimensional solution and is insensitive to shear locking.
In other article, Auricchio et al. [19] introduced new
planer linear elastic beams based on Hellinger-Reissner
principle. It was shown that the shear correction factor
is considered naturally from the variational derivation
and their model can capture the local effects produced
by boundary constrains and load distribution. Addi-
tionally, they applied their proposed model for three-
dimensional beams and derived beam model using vari-
ational dimension reduction approach [20].

In the work done by D’Ottavio [21], the multilay-
ered composite panel was divided into subdivision lay-
ers and for each sublayer, the formulation was indepen-
dently developed. Finally, the sublayers were assem-
bled and layerwise conditions were introduced. There
were several investigations which used plate and shell
theories for nano/micro-structures by modifying the
stress tensor. Instantly, Arefi et al. [22] used extended
FSDT by considering modified couple stress theory to
predict the vibration behavior of three-layered nano
plates rested on Pasternak foundation. In other work
[23], they used sinusoidal shear deformation theory to
study the bending of a sandwich microbeam with two
piezoelectric micro face-sheets. Ribeiro et al. [24], in
their good work, examined the accuracy and limita-
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tions of Carrera’s Unified Formulation by comparing
the results with experimental tests. They also devel-
oped a FORTRAN user subroutine for finite element
model and compared the obtained numerical results
with experimental ones.

In this paper, a new elastic analysis method
based on dimension reduction approach and Hellinger-
Reissner principle is presented. At the first, shape func-
tions obtained with arbitrary coefficients were adopted
along the thickness of plate for both displacement and
stress field. Then governing partial differential equa-
tions of plate were derived by using the Hellinger-
Reissner principle. After that, results of the presented
model were compared with other plate theories. The
obtained results were compared with finite element
method and the capability of the presented approach
was discussed. The main goal of this paper is deriving
a plate theory that provides an accurate description
for stress and displacement field. This theory can be
used for both thin and moderator thick plates. Be-
sides, thick, inhomogeneous, non-linear, and function-
ally graded materials could be formulated with this ap-
proach. According to implemented Hellinger-Reissner
principle, the stress field is independent of displace-
ment field. The presented theory does not need any
correction factor and will lead to an accurate in-plane
and out-of-plane stress and displacement distributions.

2. Formulation

Consider an elastic plate with initially flat surface hav-
ing thickness h, length a, and width b. The plate is
made of orthotropic material with piecewise smooth
boundaries and is subjected to bending loads. Based
on Hellinger-Reissner variational principle [19], for an
elastic rectangular plate, according to divergence oper-
ator the following relation can be written as

δJHR =

∫
Ω

δs.∇.σdΩ+

∫
Ω

∇.δσ.sdΩ

+

∫
Ω

δσ : D−1 : σdΩ+

∫
Ω

δs.fdΩ

−
∫
∂Ωs

δσ.n.s̄dΩs = 0 (1)

where s is displacement field vector and σ is the stress
field matrix. The problem domain Ω is defined in equa-
tion (2) and is shown in Fig. 1 and Ωs is boundary
domain.

Ω =

{
(x, y, z) ∈ R3|z ∈

(
−h

2
,
h

2

)
,

(x, y) ∈ A ⊂ R2

} (2)

Fig. 1. Problem domain, coordinate system and di-
mension.

s̄ is the prescribed boundary displacement that was
applied to ∂Ωs that is defined in equation (3) and f is
a body force density.

s = s̄ on Ω = ∂Ωs (3)

D is a sixth order linear and elastic stiffness tensor that
depends on the material parameters. For orthotropic
material, D is as follows [25]:

D−1 =



1

Ex
−νyx
Ex

−νzx
Ex

0 0 0

−νxy
Ey

1

Ey
−νzy
Ez

0 0 0

−νxz
Ex

−νyz
Ey

1

Ez
0 0 0

0 0 0
1

Gxy
0 0

0 0 0 0
1

Gxz
0

0 0 0 0 0
1

Gyz


(4)

where Ei, Gij and νij denote elastic modulus, shear
modulus, and Poisson’s ratio, respectively. (i =
x, y, z). At the first step, the dimension of problem
was reduced with a combination of cross-section shape
functions that weighted with arbitrary coefficient func-
tions that defined in equation (5).

γ(x, y, z) = rγ(z)γ̂(x, y) (5)

Adopting Eq. (5) in displacement field is shown in Eq.
(6) where u, ν, and w are displacement components
along the x, y, and z directions.

s =

 u(x, y, z)
ν(x, u, z)
w(x, u, z)


≈

 rTu (z) 0 0
0 rTν (z) 0
0 0 rTw(z)

 û(x, y)
v̂(x, y)
ŵ(x, y)


= rsŝ (6)

Also the dimension reduction for stress field is applied
in Eq. (7).
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σ =



σx(x, y, z)
σy(x, y, z)
σz(x, y, z)
τxy(x, y, z)
τxz(x, y, z)
τyz(x, y, z)


≈



rTσx
(z) 0 0 0 0 0
0 rTσy

(z) 0 0 0 0

0 0 rTσz
(z) 0 0 0

0 0 0 rTτxy
(z) 0 0

0 0 0 0 rTτxz
(z) 0

0 0 0 0 0 rTτyz
(z)





σ̂x(x, y)
σ̂y(x, y)
σ̂z(x, y)
τ̂xy(x, y)
τ̂xz(x, y)
τ̂yz(x, y)


= rσσ̂ (7)

So, according to definition of displacement and
stress field, the principle of variation is defined in Eq.
(8) as follows:

δs = rsδŝ

δσ = rσδσ̂
(8)

In Eq. (1), ∇ is gradient operator. The divergence of
stress and normal traction field is defined in Eqs. (9)
and (10).

∇.σ =

(
∂

∂x
E1 +

∂

∂y
E2 +

∂

∂z
E3

)
σ (9)

σ.n =
(
nxE1 + nyE2 + nzE3

)
σ (10)

where Ei(i = 1, 2, 3) is defined in Eq. (11).

E1 =

 1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0



E12 =

 0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1

 (11)

E3 =

 0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0


By substituting Eqs. (8), (9) and (10) into Eq. (1),
the following relation is obtained as below:

δJHR =

∫
Ω

[rsδŝ]
T

[(
∂

∂x
E1 +

∂

∂y
E2 +

∂

∂z
E3

)
rσσ̂

]
dΩ

+

∫
Ω

[(
∂

∂x
E1 +

∂

∂y
E2 +

∂

∂z
E3

)
rσδσ̂

]T
[rsŝ]dΩ

+

∫
Ω

[rσδσ̂]
TD−1rσσ̂dΩ+

∫
Ω

[rsδŝ]
T fdΩ

−
∫
∂Ωs

[(nxE1 + nyE2 + nzE3)rσδσ̂]
T s̄dΩs = 0 (12)

By expanding the products and assuming natural dis-
placement condition along the thickness, Eq. (12) can

be rewritten as follows:∫
Ω

[
δŝT rTs E3rσ,zσ̂ + δŝT rTs E1rσσ̂,x + δŝT rTs E2rσσ̂,y

+ δσ̂T rTσ,zE
T
3 rsŝ+ δσ̂T

,xr
T
σE

T
1 rsŝ+ δσ̂T

,yr
T
σE

T
2 rsŝ

+ δσ̂T rTσD
−1rσσ̂ + δŝT rTs f ]dΩ

−
∫
∂Ωs

δσ̂T rTσE
T
3 s̄dΩs = 0 (13)

Recalling the problem domain in Eq. (14) and summa-
rizing the Eq. (13) according to problem domain, Eq.
(15) is obtained.

Ω = t×A, t

(
−h

2
,
h

2

)
⊂ R, A ⊂ R2 (14)

∫
A

[
δŝTHsσσ̂ + δŝTGx

sσσ̂,x + δŝTGy
sσσ̂,y

+ δσ̂THσsŝ+ δσ̂T
,xG

x
σsŝ+ δσ̂T

,yG
y
σsŝ+ δσ̂THσσσ̂

− δŝTF
]
dA+ δσ̂T S̄ = 0 (15)

where G, H, F and S̄ is defined as follows:

Hsσ =

∫ h
2

−h
2

rTs E3rσ,zdz Hσs =

∫ h
2

−h
2

rTσ,zE
T
3 rsdz

Hσσ =

∫ h
2

−h
2

rTσD
−1rσdz Gx

sσ =

∫ h
2

−h
2

rTs E1rσdz

Gy
sσ =

∫ h
2

−h
2

rTs E2rσdz Gx
σs =

∫ h
2

−h
2

rTσE
T
1 rsdz

Gy
σs =

∫ h
2

−h
2

rTσE
T
2 rsdz F = −

∫ h
2

−h
2

rTs fdz

S̄ = −
∫
∂Ωs

rTσE
T
3 s̄dΩs

(16)

Applying Integration by parts from fifth and sixth
terms in Eq. (15), one can obtain Eqs. (17) and (18).∫

A

δσ̂T
,xG

x
σsŝdA =

∫ b

0

∫ a

0

δσ̂T
,xG

x
σsŝdxdy

=

∫ b

0

δσ̂TGx
σsŝdy

∣∣∣∣x=a

x=0
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−
∫ b

0

∫ a

0

δσ̂TGx
σsŝ,xdxdy

=

∫ b

0

δσ̂TGx
σsŝdy

∣∣∣∣x=a

x=0

−
∫
A

δσ̂TGx
σsŝ,xdA (17)

∫
A

δσ̂T
,yG

y
σsŝdA =

∫ a

0

∫ b

0

δσ̂T
,yG

y
σsŝdydx

=

∫ a

0

δσ̂TGy
σsŝdx

∣∣∣∣y=b

y=0

−
∫ a

0

∫ b

0

δσ̂TGy
σsŝ,ydydx

=

∫ a

0

δσ̂TGy
σsŝdx

∣∣∣∣y=b

y=0

−
∫
A

δσ̂TGy
σsŝ,ydA (18)

By substituting of Eqs. (17) and (18) into Eq. (15),
the following equation can be obtained:∫

A

[δŝTHsσσ̂ + δŝTGx
sσσ̂,x + δŝTGy

sσσ̂,y

+ δσ̂THσsŝ− δσ̂TGx
σsŝ,x − δσ̂TGy

σsŝ,y

+ δσ̂THσσσ̂ − δŝTF
]
dA+ δσ̂T S̄

+

∫ b

a

δσ̂TGx
σsŝdy

∣∣∣∣x=a

x=0

+

∫ a

0

δσ̂TGy
σsŝdx

∣∣∣∣y=b

y=0

= 0 (19)

Eq. (19) can be rewritten as Eq. (20) by rearranging
the unknowns in a vector as follows:

∫
A

[
δŝT δσ̂T ]

G


ŝ,x
ŝ,y
σ̂,x

σ̂,y

+H

{
ŝ
σ̂

}
−

{
F
0

} dA

+ δσ̂T S̄+

∫ b

0

δσ̂TGx
σsŝdy

∣∣∣∣x=a

x=0

+

∫ a

0

δσ̂Gy
σsŝdx

∣∣∣∣y=b

y=0

= 0 (20)

where H and G are

H =

[
0 Hsσ

Hσs Hσσ

]

G =

[
0 0 Gx

sσ Gy
sσ

−Gx
σs Gy

σs 0 0

] (21)

Since Eq. (20) must satisfy all virtual fields, the system
of partial differential Eq. (22) must be satisfied.

G


ŝ,x
ŝ,y
σ̂,x

σ̂,y

+H

{
ŝ
σ̂

}
=

{
F
0

}
(22)

The above system of partial differential Eq. (22) is the
governing equations of plate. By choosing appropri-
ate section shape functions for displacement and stress
field, accurate solution can be obtained.

3. Simply Supported Plate

In this section the above formulation is examined by
considering a simply supported boundary condition
plate subjected to uniform and sinusoidal load. To en-
sure that the model is well-posed, the following equa-
tion is required to be satisfied [20]:

∇.σ = s (23)

In addition, it is assumed that the shape function r
consists of polynomial terms with their special degree.
Consequently, to satisfy Eq. (23), the following degrees
for stress and displacement field are considered:

deg(rσx
) = deg(rτxy

) = deg(rτxz
)− 1 = deg(ru)

deg(rτxy
) = deg(rσy

) = deg(rτyz
)− 1 = deg(rν) (24)

deg(rτxz
) = deg(rτyz

) = deg(rσz
)− 1 = deg(rw)

where deg. indicates the considered polynomial degree
in thickness direction. By choosing quadratic form (de-
gree of 2) for rτxz

, instead of shear correction factor,
and considering relations (24), the involved fields in
Table 1 are selected.

By using Eq. (16) and then Eq. (21), coefficients
of governing equations (22) will be determined.

For simply supported boundary condition, the fol-
lowing Fourier series are considered:

Table 1
Polynomials degrees of profile vectors, continuity properties, and degree of freedom.

Parameter ru rv rw rσx rσy rσz rτxy rτxz rτyz

Degree 1 1 2 1 1 3 1 2 2
Continuity C−1 C−1 C−1 C−1 C−1 C0 C−1 C0 C0
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u =
∞∑

m=1

∞∑
n=1

Umn cos
(nπx

a

)
sin

(mπy

b

)

v =
∞∑

m=1

∞∑
n=1

Vmn sin
(nπx

a

)
cos

(mπy

b

)
(25)

w =

∞∑
m=1

∞∑
n=1

Wmn sin
(nπx

a

)
sin

(mπy

b

)
In the current method, the stress field is independent
of displacement field. According to elasticity theory
and considering the above displacement field, the stress
field is obtained as follows

σi =
∞∑

n=1

∞∑
m=1

Si
mn cos

(mπx

a

)
sin

(nπy
b

)
i = x, y, z

σxy =
∞∑

n=1

∞∑
m=1

Sxy
mn cos

(mπx

a

)
cos

(nπy
b

)

σxz =
∞∑

n=1

∞∑
m=1

Sxz
mn cos

(mπx

a

)
sin

(nπy
b

)

σyz =
∞∑

n=1

∞∑
m=1

Syz
mn sin

(mπx

a

)
cos

(nπy
b

)

(26)

By substituting Eq. (25) and Eq. (26) into Eq. (22),
three algebraic equations are obtained. The unknown
coefficients can be solved easily.

4. Numerical Results

In this section, the comparison between previous theo-
ries and current work is presented. Eq. (27) shows the
dimensionless transversal displacement at the center of
the plate for the sinusoidal and uniform load.

w̄ =
Eh3

q0a4
w × 102 (27)

The dimensionless transverse displacement for the cen-
ter of orthotropic plate is shown in Table 2. Ks = 5/6 is
used as shear correction factor for FSDT. Both square
and rectangular plates subjected to both uniform and

sinusoidal loads are considered in this table. The mate-
rial properties of graphite fabric-carbon matrix layers,
which are characterized as orthotropic, is presented in
Eq. (28).

E1 = 25.1msi, E2 = 4.8msi, E3 = 0.75msi

G12 = 1.36msi, G13 = 1.2msi, G23 = 0.47msi (28)

ν12 = 0.036, ν13 = 0.25, ν23 = 0.171

As illustrated in Table 2, there is a very little dif-
ference between the current work and exact elasticity
theory for all different loadings and aspect ratios. Al-
though, there is the same polynomial degree for in-
plane displacements in FSDT and the current work,
more accurate results are obtained without using shear-
ing correction factor of the current work. There is a
small error between all theories with elasticity in thin
plates but there was an obligation to choose more com-
plicated theories for thick plates.

Due to applying shear correction factor for FSDT,
there isn’t notable difference between the current work
and FSDT for displacements. On the other hand,
FSDT cannot provide correct results for stress, espe-
cially for thick plates. In the case of thin plates, the
results are very close because the polynomial variations
are not prominent. The presented results are in very
good agreement compared with elasticity theory. For
square thin plate, the obtained results provide exact
five-digit accuracy under uniform load. For moder-
ately thick plates more accurate results are obtained,
compared with FSDT, because of considering correct
variation for shear stress but for rectangular plates its
accuracy depends to a/b ratio.

Out-of-plane shear stresses along the thickness for
orthotropic plate are shown in Fig. 2. In this fig-
ure, τxz and τyz are plotted at (x, y) =

(
0,

b

2

)
and

(x, y) =

(
a

2
, 0

)
. It is evident that there is a very

little difference between the current method and elas-
ticity solution. The dimensionless stress for one layer
orthotropic square plate under uniform load is shown
in Table 3. The dimensionless ratios are as

(σ̄xx, σ̄yy, σ̄xy) =

(
σxx

(
a

2
.
b

2
,
h

2

)
, σyy

(
a

2
.
b

2
,
h

2

)
, σxy

(
0, 0,−h

2

))
q0

(
a

h

)

(σ̄xz, σ̄yz) =

(
σxz

(
0,

b

2
, 0

)
, σyz

(
a

2
, 0, 0

))
q0

(a
h

)
(29)
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Table 2
Transverse displacement for the center of orthotropic plate.

Load Uniform load Sinusoidal load
a/h 5 10 20 50 100 5 10 20 50 100

Square

CPT 2.9783 2.9783 2.9783 2.9783 2.9783 1.8870 1.8870 1.8870 1.8870 1.8870
FSDT 4.7753 3.3878 3.0169 2.9109 2.8956 3.0926 2.1631 1.9160 1.8455 1.8354
Current 4.7773 3.3899 3.0189 2.9128 2.8976 3.0934 2.1645 1.9173 1.8468 1.8367
Elasticity 4.7542 3.3872 3.0185 2.9128 2.8976 3.0742 2.1624 1.9170 1.8467 1.8366

Rec.

CPT 2.9772 2.9772 2.9772 2.9772 2.9772 2.3308 2.3308 2.3308 2.3308 2.3308
FSDT 5.4474 3.5934 3.1348 3.0068 2.9885 4.2330 2.8003 2.4411 2.3404 2.3260
Current 5.4481 3.5944 3.1357 3.0077 2.9894 4.2331 2.8011 2.4419 2.3412 2.3269
Elasticity 5.4185 3.5913 3.1351 3.0074 2.9892 4.2080 2.7988 2.4416 2.3412 2.3268

Fig. 2. Out-of-plane shear stresses along thickness for orthotropic plate.

Table 3
Dimensionless stresses for orthotropic square plate under uniform load.

a/h Theory σ̄xx σ̄yy σ̄xy σ̄xz σ̄yz

5
FSDT 0.6553 0.1902 0.0409 0.5553 0.2627
Current 0.6554 0.1901 0.0408 0.6919 0.3260
Elasticity 0.7270 0.1909 0.0430 0.6331 0.2985

10
FSDT 0.7088 0.1457 0.0356 0.5853 0.2365
Current 0.7089 0.1456 0.0356 0.7295 0.2932
Elasticity 0.7283 0.1455 0.0364 0.7014 0.2806

20
FSDT 0.7257 0.1315 0.0336 0.5940 0.2292
Current 0.7259 0.1314 0.0336 0.7404 0.2841
Elasticity 0.7308 0.1314 0.0339 0.7263 0.2767

50
FSDT 0.7308 0.1273 0.0330 0.5966 0.2273
Current 0.7309 0.1271 0.0329 0.7436 0.2816
Elasticity 0.7317 0.1271 0.0330 0.7362 0.2760

100
FSDT 0.7315 0.1266 0.0328 0.5970 0.2270
Current 0.7317 0.1265 0.0329 0.7441 0.2812
Elasticity 0.7318 0.1264 0.0328 0.7380 0.2759

It is worthy to mention that in Table 3, in the cur-
rent method, the displacement field is independent of
stress field. Furthermore, the simplest degree for poly-
nomials is considered for stresses. The FSDT and cur-

rent work lead to the same results for in-plane stresses,
but for out-of-plane stresses, more errors can be seen
in FSDT because of constant shear assumption along
the thickness. According to Table 3, by increasing the
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aspect ratio (thin plates), the difference between dif-
ferent theories becomes smaller. In fact, for thin plate,
the effect of transversal shear strains in the thickness
direction is small. However, the obtained distribution
of shearing stress in the thickness direction is more ac-
curate in comparison with FSDT. Furthermore, there
is a small error between the current work and FSDT
for in-plane stress for thick plate because the same dis-
tribution fields were considered for both theories.

In Table 4, the transverse displacements are pre-
sented for two-layer (0/90) composite plates. The ma-
terial properties are [18]:

E1 = 25E2, E2 = E3, G12 = G13 = 0.5E2,

G23 = 0.2E2, ν12 = ν13 = ν23 = 0.25
(30)

Fig. 3. Shear stress distribution in xz plane for 2
layers of orthotropic plate along thickness.

CPT has the largest error due to its simplification
assumptions. The out-of-plane shear stresses for 2 lay-
ers are shown in Fig. 3 and Fig. 4.

The current work was compared with finite element
method by commercial software Abaqus 6.14. The fi-
nite element (FE) modeling of 3-layer (0/90/0) com-
posite plate is shown in Fig. 5(a-b). The plate was
square with aspect ratio of a/h = 5. Simply support
boundary condition with uniform loading was adopted

for plate. In Fig. 5c, the displacement contour is pre-
sented. Displacement contour is plotted in Fig. 5d
based on the current method by using Maple code. As
one can see, there is just 1.5% difference between finite
element modeling and the current work. It is noted
that by using shell model, FE method could not pro-
vide shearing stress in thickness direction.

Fig. 4. Shear stress distribution in yz plane for 2
layers of orthotropic plate along thickness.

5. Conclusions

A combined modeling approach based on Hellinger-
Reissner Principle and dimension reduction approach
was investigated in this paper. First, the dimension
of problem was reduced by using combination of cross-
section shape functions which were weighted with ar-
bitrary coefficient functions. Then, by applying mixed
principle, the partial system of governing equations
were obtained. The accuracy and exactness of this
method was examined by comparison with FSDT and
elasticity theories and FE methods. The substantial
benefits of this approach are:

• The proposed approach does not need the use of
shear correction factor.

• The current method can provide a very accurate,
yet fast and simple solution by increasing the de-
gree of functions in thickness direction.

Table 4
Transverse displacements for 2 layer orthotropic plate.

Theory 5 10 20 50 100
CPT 2.0439 2.0439 2.0439 2.0439 2.0439
FSDT 2.8570 2.1006 1.9119 1.8592 1.8516
Current work 2.8733 2.1451 1.9630 1.9121 1.9048
Elasticity 2.8362 2.1370 1.9611 1.9118 1.9047
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Fig. 5. a) Finite element model, b) Composite plate with 3 plies 0/90/0, c) Vertical displacement distribution
from Abaqus, d) Vertical displacement distribution from current work.

• Stress field and displacement field are indepen-
dent and the stress field can be obtained without
computing the displacement field; thus there is
no need to post-processing operation for stress
field.

• By using current mixed theory, the obtained
stress field has more accurate result compared
to same displacement description used by other
theories.

• The presented method is very convenient for lay-
ered composite plates and leads to very accurate
results in this category.

• The presented theory can be used for more com-
plex situations like inhomogeneous and thick
plates.
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