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Abstract

In this article, a vibrational behavior of sandwich beams with stiff and flexible
cores and face sheets reinforced with carbon nanotubes is investigated. Carbon
nanotubes are used as materials with properties varying along the thickness. In
order to model the behavior of faces, the Timoshenko beam’s theory is employed
and also for modeling the behavior of the core, three-dimensional elasticity is
used. The axial stresses of the core are considered in this model and therefore
it is suitable for modelling two types of stiff and flexible cores. The equations
of motion are derived using the variations of energy, and the Navier method
is used to solve the equations of motion. Results are presented for different
volumes of carbon nanotubes with different distributions along the thickness
of the faces. In the case of stiff core, results show that the FG-V distribution
has the highest natural frequency and the FG-Λ distribution has the lowest
natural frequency in all cases. For flexible core, the FG-X distribution leads to
the highest natural frequency and also the FG-O distribution has the lowest
natural frequency. Furthermore, results indicate that an extended high-order
sandwich panel theory is a suitable model for analysis of stiff and flexible core
sandwich panels. It must be mentioned for the cores made of stiff materials,
the normal stress along the length of the core must be considered. It is due to
the fact that the obtained results show that ignoring the normal stress along
the length of the core leads to the large difference in the natural frequency
of the system. In this article, due to the high order displacement field of the
core, the flexibility of the core can be seen in the modeling. Additionally,
since the term σc

xx of the core is considered in the strain energy, a stiff core
can be modeled. In many works the axial stresses of the core is removed from
equations, therefore according to the results of sandwich beam with stiff core,
lots of errors will be observed. Therefore, a proposed theory in this research
can easily model a sandwich beam with two types of stiff and flexible cores.
Since the Timoshenko beam theory is also implemented for modeling faces,
different pattern of CNTs can be investigated accurately.

Nomenclature
σxx Stress τxz Shear stress
ϵxx Strain γxz Shear strain
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Vcn Volume fraction of carbon nanotubes Vm Volume fraction of the matrix
η1 Efficiency parameter for scale dependent

properties
η3 Efficiency parameter for scale dependent

properties
Cc

ij Stiffness coefficients ks Shear vector
σc
xx Stress elongation of core

1. Introduction

A sandwich beam is made of two main parts. First,
the middle core which is weak and usually bulky. The
other one is face sheets on both sides of the core, which
are strong and usually thin [1]. Face sheets are usu-
ally made of metal sheets or composite sheets, and the
core can be made of light polymers, foams, honeycomb
structures, or materials with functionally distributed
properties. In the recent years plastic foams have been
used instead of the lattice core to reduce weight and
flexibility. The flexible core makes the beam bendable.
The core material should have characteristics such as
low density for lowering the weight of the structure and
the high vertical Young’s modulus to prevent excessive
change along the thickness and reduction of flexural
stiffness. In most cases, face sheets tolerate the bend-
ing loads and the core tolerates the shear loads [2].

The general principles governing sandwich struc-
tures are the same despite their high diversity. This
simple structure, due to its similar appearance with
sandwich, is called a sandwich. A sandwich structure
has a much higher resistance compared to its individ-
ual components. Frostig et al. [3], in 1990, developed
a prominent high-order sandwich panel theory that is
a kind of multi-layered theory.

In this theory, face sheets and core are modeled
separately. In most researches, due to the flexibility of
the core, the in-plane stress for core is discarded due
to the low modulus of the flexible core in comparison
to the face sheets. But the model presented in this ar-
ticle considered the in-plane stress, therefore it can be
applied for the stiff core.

Carbon nanotubes have remarkable mechanical
properties [4]. If the carbon nanotubes only contain
a pipe of graphite called single-wall nanotubes and if it
contains a number of united central tubes a nanotube is
called a multi-wall [5]. The use of carbon nanotubes as
reinforcement of composites compared to conventional
carbon fibers can significantly increase the strength
and rigidity of composites [6]. FG carbon nanotubes
are functionally graded materials whose mechanical
properties change along the thickness. In recent years,
this topic has broadly focused studies on bending, vi-
bration, and buckling of structures with functionally
graded materials. Wu et al. [7] and Bhangale and
Ganesan [8] studied the bending and vibrational prop-
erties of sandwich beam with functionally graded face
sheets. Shen [9] compared and examined the effect of
uniform distribution and functional distribution on the

flexural behavior of carbon nanotube plates. Their re-
sult showed functionally graded distributed nanotubes
improve the bending behavior of the plates. Shen and
Zhu [10] used the high shear deformation theory to
study the buckling of nano-carbon reinforced sandwich
plates. Their result showed the temperature variation,
volume fraction of nanotubes, and the thickness of the
coating affect the buckling load of the sandwich plates.
Wu et al. [7] studied the vibrational and flexural be-
havior of sandwich beams with the face sheets of func-
tionally graded carbon nanotubes using the theory of
Timoshenko’s beam. It was concluded the distributed
carbon-nanotubes scaling function had a higher natural
frequency and a better bending behavior than uniform
distribution. Ansari et al. [11] examined the nonlin-
ear vibrations of composite plates reinforced with car-
bon nanotubes. The first-order shear deformation the-
ory and Van Kreme’s relations were used. Increasing
the volume of carbon nanotubes, growth in the flexu-
ral hardness of the plate and therefore increase in the
natural frequency were observed. Furthermore, it was
revealed that the distribution of nanotubes has a signif-
icant effect on the vibration behavior of the plates. Ke
et al. [12] studied the effect of the volume fraction of
carbon nanotubes on nonlinear free vibrations. Their
results showed that by increasing the volume fraction
of carbon, the natural frequency increases. Frostig [13]
explored the behavior of sandwich beams and flexible
layered structures. In his studies, the metallic, com-
posite, and foam-made cores and calculated the gov-
erning equations for the behavior of these structures
were analyzed. In this research, the vibrational be-
havior of a stiff and flexible core sandwich beam and
reinforced composite face sheets with FG carbon nan-
otubes are investigated. For modeling the face sheets,
Timoshenko’s theory and also for modeling the behav-
ior of the core, the three-dimensional elasticity, taking
into account in-plane stresses, are employed. In order
to solve the equations of motion, the Navier method
is used. The effect of different volumes of carbon nan-
otubes, different distribution of nanotubes and differ-
ent thicknesses of the face sheets on the natural fre-
quency of the system is investigated for two types of
stiff and flexible cores.

2. Derivation Equations of Motion

A sandwich beam is composed of a thin face sheet in
the top and bottom, as well as a core in the middle of
the beam, and the cores and face sheets are stuck to-
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gether. In this paper, the core is considered to be stiff
and flexible. The upper and lower face sheets are rein-
forced by carbon nanotubes. The length of the beam is
L and the width of the beam is b and the thickness of
each layer is h, as shown in Fig. 1, and also the center
of coordinates for the layers and core are each in the
middle of their thickness.

Fig. 1. Geometry and sandwich dimension.

3. Composite Properties

In this research, the face sheets are made of compos-
ite reinforced with carbon nanotubes. Therefore, it is
necessary to express the mechanical properties of these
materials. Hooke’s law for mixtures is as follows [14]:

σxx = C∗
11ϵxx (1)

τxz = C∗
55γxz (2)

C∗
11 = C11m

4 + 2(C12 + C66)m
2n2 + C22n

4 (3)

C∗
55 = C55m

2 + C44n
2 (4)

where

m = cos θ (5)

n = sin θ (6)

Angle of the carbon nanotubes with the horizontal
axis is θ. As the nanotubes are placed horizontally in
the procedure of this study, θ = 0 and relations (3)
and (4) are written as follows [14]:

C∗
11 = C11 = E11 (7)

C∗
55 = C55 = G13 = G12 (8)

According to the mixing rule for mechanical prop-
erties, the modulus of elasticity and shear modulus are
written as follows [15]:

E11 = η1VcnE
cn
11 + VmEm (9)

η3
G12

=
Vcn

Gcn
12

+
Vm

Gm
(10)

where Vcn is the volume fraction of carbon nanotubes,
Vm is the volume fraction of the matrix, Ecn

11 is modu-
lus of elasticity of carbon nanotubes, Em is the matrix

elastic modulus, Gcn
12 is the shear modulus of the car-

bon nanotubes, Gm is the shear modulus of matrix and
η1 and η3 are the efficiency parameters for scale depen-
dent properties. Face sheets are considered in the form
of a functionally graded carbon nanotube, UD, FG-O,
FG-X, FG-V, FG-Λ, and their distribution pattern is
shown in Fig. 2. The volume fraction of the carbon
nanotubes is a function of the thickness of the face
sheets, which is expressed in Table 1 in terms of vol-
ume fraction and thickness. In Table 1, V ∗

cn is a special
volume fraction.
Table 1
The ratio of the volume fraction of carbon nanotubes and the
thickness.

Distribution
pattern of nano
tubes

Volume frac-
tion for top
face sheet (Vcn)

Volume fraction
for bottom face
sheet (Vcn)

UD V ∗
cn V∗

cn

FG-O 2V ∗
cn

(
1− 2 |z|

ht

)
2V∗

cn

(
1− 2 |z|

hb

)
FG-X 4V ∗

cn

(
|z|
ht

)
4V∗

cn

(
|z|
hb

)
FG-V 2V ∗

cn

(
0.5− z

ht

)
2V∗

cn

(
0.5+

z

hb

)

FG-Λ 2V ∗
cn

(
0.5 +

z

ht

)
2V∗

cn

(
0.5− z

hb

)

Fig. 2. Distribution pattern of carbon nanotubes.

According to the mixture rules of composite mate-
rials, the density of face sheets is as follows [16]:

ρ = Vcnρ
cn + Vmρm (11)

where ρcn is the density of the carbon nanotubes and
ρm is the density of the matrix.

4. Displacement

In this paper, the high-order theory of sandwiches is
developed. In order to model the face sheets, the Tim-
oshenko’s beam theory is employed. Therefore, the
displacement field for the face sheets is explained as
follows [13]:

ui(x, z, t) = ui
O(x, t) + ziϕ

i(x, t) (i = t, b) (12)

wi(x, z, t) = wi
O(x, t) (i = t, b) (13)
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Strain relations for face sheets are expressed as follows
[13]:

ϵixx(x, z, t) = ui
,x(x, z, t) = ui

0,x(x, t) + zϕi
,x(x, t) (14)

γi
xz(x, z, t) = ui

,x(x, z, t) + wi
,x(xzt)

= ϕi(x, t) + wi
0,x(x, t)

(15)

The displacement field for the core is explained as
follows [13]:

uc(x, z, t) = uc
0(x, t) + uc

1(x, t)zc + uc
2(x, t)z

+
c u

c
3(x, t)z

3
c

(16)

wc(x, z, t) = wc
0(x, t) + wc

1(x, t)zc + wc
2(x, t)z

2
c (17)

Due to the continuity of the displacement between
the cores and the face sheets, the compatibility rela-
tionships are expressed as follows [3]:

wc
(
x,− c

2
, t
)
= wt(x, t) (18)

uc
(
x,− c

2
, t
)
= ut

0(x, t) +
ht

2
ϕt(x, t) (19)

wc
(
x,

c

2
, t
)
= wb(x, t) (20)

uc
(
x,

c

2
, t
)
= ub

0(x, t)−
hb

2
ϕb(x, t) (21)

Employing the compatibility relationships and also
applying a series of mathematical manipulations, the
core displacement can be defined as follows [3]:

uc(x, z, t) = uc
0(x, t) + uc

1(x, t)zc +

[
2

c2

(
ut
0(x, t)+

ub
0(x, t)− 2uc

0(x, t) +
ht

2
ϕt(x, t)− hb

2
ϕb(x, t)

)]
z2c+

[
4

c3

(
− ut

0(x, t)−
ht

2
ϕt(x, t) + ub

0(x, t)

− hb

2
ϕb(x, t)− cϕc

0(x, t)

)]
z3c (22)

wc(x, z, t) = wc
0(x, t) +

1

c
[wb

0(x, t)− wt
0(x, t)]zc

+
2

c2
[wt

0(x, t) + wb
0(x, t)− 2wc

0(x, t)]z
2
c (23)

Due to the core displacement field, a flexible core
can be modeled. Strain relations for the core are ob-

tained based on linear strains as follows [13]:

ϵcxx(x, z, t) = uc
,x(x, z, t) (24)

γc
xz(x, z, t) = uc

,z(x, z, t) + wc
,x(x, z, t) (25)

ϵczz(x, z, t) = wc
,z(x, z, t) (26)

The stress and strain relations are based on linear
elastic behavior as follows [7]: σc

xx

σc
zz

τ cxz

 =

 Cc
11 Cc

13 0
Cc

13 Cc
33 0

0 0 Cc
55

 εcxx
εczz
γc
xz

 (27)

where Cc
ij (i, j = 1, 3, 5) are the stiffness coefficients

for orthotropic materials. Equations of motion are ob-
tained based on the Hamilton principle in the following
form [7]: ∫ t2

t1

[∂T − ∂U ]dt = 0 (28)

5. Calculation of Strain Energy

The first variation of the strain energy is calculated as
follows [7]:

δU =

∫ ∫ ∫
vtop

σxxδϵxxdv +

∫ ∫ ∫
vtop

ksτxzδγxzdv

+

∫ ∫ ∫
vbot

σxxδϵxxdv +

∫ ∫ ∫
vbot

ksτxzδγxzdv

+

∫ ∫ ∫
vcore

σxxδϵxxdv +

∫ ∫ ∫
vcore

σzzδϵzzdv

+

∫ ∫ ∫
vcore

τxzδγxzdv (29)

In many works the σc
xx is removed from equations,

therefore according to the results in sandwich beam
with stiff core if the σc

xx is removed from equations, a
lot of error in results will be created. Since the stiff
core is used in this paper, the σc

xx in the formula (29)
must be considered.

6. Calculation of Kinetic Energy

δT = −
∫
vt

ρt(üt
0δu

t
0 + ẅt

0δw
t
0)dv

−
∫
vb

ρb(üb
0δu

b
0 + ẅb

0δw
b
0)dv

−
∫
vc

ρcücδucdv −
∫
vc

ρcẅcδwcdv (30)
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In relation (30), the acceleration of the core and face
sheets are expressed as follows [13]:
üi = üi

0 + zϕ̈i (i = t, b) (31)

ẅi = ẅi
0 (i = t, b) (32)

üc = üc
0 + ϕ̈c

1zc +

[
2

c2

(
üt
0 + üb

0 − 2üc
0

+
ht

2
ϕ̈t − hb

2
ϕ̈b

)]
z2c +

[
4

c3

(
− üt

0

− ht

2
ϕ̈t + üb

0 −
hb

2
ϕ̈b − cϕ̈c

0

)]
z3c (33)

ẅc = ẅc
0 +

1

c

[
ẅb

0 − ẅt
0

]
zc +

2

c2
[
ẅt

0 + ẅb
0 − 2ẅc

0

]
z2c (34)

By replacing relations (31)-(39) in equation (30),
kinetic energy is expressed as:

δT = −
∫ l

0

([
b(It0ü

t
0 + It1ϕ̈

t
)
δut

0 + b
(
It1ü

t
0

+ It2ϕ̈
t
)
δϕt + bIt0ẅ

t
0δw

t
0

]
+

[
b
(
Ib0ü

b
0 + Ib1ϕ̈

b
)
δub

0

+ b(Ib1ü
b
0 + I2ϕ̈

b
)
δϕb + bIb0ẅ

b
0δw

b
0

])
dx

+

∫
vc

ρcücδucdv −
∫
vc

ρcẅcδwcdv (35)

In the equation (35) the values of Ii0, Ii1, and Ii2
are obtained for different distributions of carbon nan-
otubes as below:

Ii0 =

∫
vi

ρidz (i = t, b) (36)

Ii1 =

∫
vi

ρizdz (i = t, b) (37)

Ii2 =

∫
vi

ρiz
2dz (i = t, b) (38)

After obtaining the strain energy and kinetic en-
ergy in the equation (28), the equations of motion are
obtained as follows:

− b
(
It0ü

t
0 + It1ϕ̈

t) +N t
xx,x − 2

c2
P c
xx,x +

4

c3
Qc

xx,x

− 2

c2
P c
xz,z +

4

c3
Qc

xz,z −N c
xz = 0

(39)

b(It1ü
t
0 + It2ϕ̈

t) +M t
xx,x −Qt

xx − ht

c2
P c
xx,x

+
2ht

c3
Qc

xx,x − ht

c2
P c
xz,z +

2ht

c3
Qc

xz,z −
ht

2
N c

xz = 0

(40)

− bIt0ẅ
t
0 +Qt

xx,x +
1

c
M c

zz,z −
2

c2
P c
zz,z +

1

c
M c

xz,x

− 2

c2
P c
xz,x −N c

zz = 0

(41)

− b(Ib0ü
b
0 + Ib1ϕ̈

b)−N b
xx,x − 2

c2
P c
xx,x − 4

c3
Qc

xx,x

− 2

c2
P c
xz,z −

4

c3
Qc

xz,z +N c
xz = 0

(42)

− b(Ib1ü
b
0 + Ib2ϕ̈

b) +M b
xx,x −Qb

xx +
hb

c2
P c
xx,x

+
2hb

c3
Qc

xx,x +
hb

c2
P c
xz,z +

2hb

c3
Qc

xz,z −
hb

2
N c

xz = 0

(43)

− bIb0ẅ
b
0 +Qb

xx,x − 1

c
M c

zz,z −
2

c2
P c
zz,z −

1

c
M c

xz,x

− 2

c2
P c
xz,x +N c

zz = 0

(44)

− cρcüc −N c
xx,x +

4

c2
P c
xx,x −N c

xz,z

+
4

c2
P c
xz,z = 0

(45)

−M c
xx,x +

4

c2
Qc

xx,x −M c
xz,z +

4

c2
Qc

xz,z = 0 (46)

− 2c

3
ρcẅc −N c

zz,z +
4

c2
P c
zz,z −N c

xz,x

+
4

c2
P c
xz,x = 0

(47)

In the equations of motion, Equations (39) through
(47), the parameters used are defined as:

N c
ij =

∫ c/2

−c/2

bσc
ijdz (i, j = x, z) (48)

N c
ij.z =

∫ c/2

−c/2

bσc
ij.zdz (i, j = x, z) (49)

M c
ij =

∫ c/2

−c/2

bzσc
ijdz (i, j = x, z) (50)

M c
ij.z =

∫ c/2

−c/2

bzσc
ij.zdz (i, j = x, z) (51)

P c
ij =

∫ c/2

−c/2

bz2σc
ijdz (i, j = x, z) (52)

P c
ij.z =

∫ c/2

−c/2

bz2σc
ij.zdz (i, j = x, z) (53)

Qc
ij =

∫ c/2

−c/2

bz3σc
ijdz (i, j = x, z) (54)

Qc
ij.z =

∫ c/2

−c/2

bz3σc
ij.zdz (i, j = x, z) (55)

Journal of Stress Analysis/ Vol. 3, No. 2/ Autumn − Winter 2018-19 5



N i
xx =

∫ hi
2

−hi
2

b[σi
xx]dz =

∫ hi
2

−hi
2

b[Ei
11ϵ

i
xx]dz

=

∫ hi
2

−hi
2

bEi
11

[
∂ui

0

∂x
+ z

∂ϕi

∂x

]
dz (i = t, b)

(56)

N i
xx = Ai

∂ui
0

∂x
+Bi

∂ϕi

∂x
(i = t, b) (57)

M i
xx =

∫ hi
2

−hi
2

bz[σi
xx]dz =

∫ hi
2

−hi
2

bz[Ei
11ϵ

i
xx]dz

=

∫ hi
2

−hi
2

bzEi
11

[
∂ui

0

∂x
+ z

∂ϕi

∂x

]
dz (i = t, b)

(58)

M i
xx = Bi

∂ui
0

∂x
+ Ci

∂ϕi

∂x
(i = t, b) (59)

Qi
xx =

∫ hi
2

−hi
2

bks[τ
i
xz]dz =

∫ hi
2

−hi
2

bks[G
i
12γ

i
xz]dz

=

∫ hi
2

−hi
2

bksG
i
12[ϕ

i +
∂wi

0

∂x
]dz (i = t, b) (60)

Qi
xx = Di

[
ϕi +

∂wi
0

∂x

]
(i = t, b) (61)

where Ai, Bi, Ci, and Di are different for different dis-
tributions of carbon nanotubes, and these values are
obtained according to the following relations:

Ai =

∫ hi
2

−hi
2

bEi
11dz (i = t, b) (62)

Bi =

∫ hi
2

−hi
2

bzEi
11dz (i = t, b) (63)

Ci =

∫ hi
2

−hi
2

bz2Ei
11dz (i = t, b) (64)

Di =

∫ hi
2

−hi
2

bksG
i
12dz (i = t, b) (65)

In equations (60) and (65), ks is the correction co-
efficient of the shear vector and its value is considered
as ks =

π2

12
[7]. Ai is tensile strength, Bi is coupling

strength, Ci is bending strength, Di is shear strength
for face sheets. Finally, using the relations (48) to (65),
the governing equations of motion are expressed as fol-

lows:

b(It1ϕ̈
t
0 + It0ü

t
0) + b

(
ρccü

b
0

70
+

ρccü
c
0

15
+

3ρccü
t
0

35
− ρccü

c
1

70

− ρcchbϕ̈
b
0

140
+

3ρcchtϕ̈
t
0

70

)
+

47bCc
55u

t
0

15c
− 7bCc

55u
b
0

15c

− 8bCc
55u

c
0

3c
− ∂2ut

0

∂x2

(
At +

3bcCc
11

35

)

− bcCc
11

70

∂2ub
0

∂x2
− bcCc

11

15

∂2uc
0

∂x2
+

4bCc
55u

c
1

5

− ∂2ϕt
0

∂x2

(
Bt +

3bcCc
11ht

70

)
+

bc2Cc
11

70

∂2uc
1

∂x2

+
bcCc

11hb

140

∂2ϕb
0

∂x2
+

7bCc
55hbϕ

b
0

30c
+

47bCc
55htϕ

t
0

30c

+
∂wb

0

∂x

(
bCc

13

30
+

bCc
55

30

)
− ∂wc

0

∂x

(
2bCc

13

5
+

2bCc
55

5

)

+
∂wt

0

∂x

(
11bCc

13

30
− 19bCc

55

30

)
= 0 (66)

b(It2ϕ̈
t
0 + It1ü

t
0) + b

(
3ρcch

2
t ϕ̈

t
0

140
− ρcc

2htü
c
1

140
+

ρcchtü
b
0

140

+
ρcchtü

c
0

30
+

3ρcchthtü
t
0

70
− ρcchbhtϕ̈

b
0
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c
0

15
− ρccẅ

t
0

30

)
+ Ib0bẅ
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In this research, the Navier method is used to solve
the motion equations and for achieving the natural fre-
quency of sandwich beam with the face sheets of car-
bon nanotubes. Using nine equations of motions, mass
gravity matrices and stiffness matrices will be obtained
as follows:

Mÿ +Ky = f (75)

fT = [0 0 0 0 0 0 0 0 0] (76)

yT = [ut
0 ϕt

0 wt
0 ub

0 ϕb
0 wb

0 ub
0 uc

1 wc
0] (77)

For the simply supported beam, the following relations
are considered, and mass and stiffness matrices are cal-
culated.

ui
0(x, t) = U i

0 cos(αx)e
iwt (i = t, b, c) (78)

uc
1(x, t) = U c

1 cos(αx)e
iwt (79)

ϕi
0(x, t) = ϕi

0 cos(αx)e
iwt (i = t, b) (80)

wi
0(x, t) = W i

0 sin(αx)e
iwt (i = t, b, c) (81)

α = nπ/L (82)

By replacing the relations (78), (79), (80), and (81)
in the equation (75), the following relation is obtained.

(−w2M̄ + K̄)ȳ = 0 (83)

ȳ = [U t
0 ϕt

0 W t
0 U b

0 ϕb
0 W b

0 U c
0 U c

1 W c
0 ] (84)

7. Results and Discussion

First of all, the results are verified to ensure the present
formulation. For this purpose, the results of this study
are compared with those obtained by Wu et al. [7].
The geometric and mechanical properties of the beam
are as follows:

Elasticity modulus of matrix is Em = 2.5GPa and
density of matrix is ρm = 1190kg/m3. density of nan-
otubes is m = 0.3 and Ecn

11 = 5.6466TPa, Gcn
12 =

1.9445TPa, ρcn = 1400kg/m3 and cn = 0.175. All
of these values are at room temperature and for the
hard core Ec = 113.8GPa, ρc = 4430kg/m3, c = 0.342

as well as for flexible core values are Ec = 6.89MPa,
ρc = 97kg/m3 and c = 0.342, The scale-dependent
parameters for carbon nanotubes are as follows: for
v∗cn = 0.12, η1 = 0.137 and η3 = 0.715 for v∗cn = 0.17,
η1 = 0.142 and η3 = 1.138 and for a volume fraction
vcn

∗ = 0.28 η1 = 0.141 and η3 = 1.109.

The characteristics of the sandwich beam are as-
sumed to be L = 200mm , b = 10mm , c = 8mm and
ht = hb = 1mm. It is assumed that L is the length of
the beam and c is the thickness of the core and b is the
width of the beam. Results are made dimensionless in
terms of relation wL

√
(ρc(1− v2c )/Ec. The results for

the first three natural frequencies are calculated and
reported in tables (2) and (3). Tables (2) and (3) show
that there is a good matching between the obtained re-
sults and the results of Wu et al. Of course the results
are a little less in magnitude from the results of Wu
et al. The reason is that in the research done by Wu
et al. the Timoshenko’s theory was used for modeling
the entire beam that led to errors while this research
is developed based on the sandwich high order theory.
Table 2
Non-dimensional natural frequency of sandwich beam with stiff
core and carbon nanotube sheets with UD distribution and
v∗cn = 0.12.

First
mode

Second
mode

Third
mode

Current
article 0.1401 0.5510 1.2075

[7] 0.1432 0.5650 1.2429

Table 3
Non-dimensional natural frequency of sandwich beam with stiff
core and carbon nanotube sheets with FG-V distribution and
v∗cn = 0.12.

First
mode

Second
mode

Third
mode

Current
article 0.1421 0.5565 1.2122

[7] 0.1453 0.5730 1.2599

After validation of the results, the effect of differ-
ent factors such as carbon nanotubes volume fraction,
carbon nanotubes distribution in sheets, and geometry
on natural frequency is investigated. For this purpose,
the characteristics of the sandwich beam in this re-
search are L = 125mm , b = 30mm and c = 8mm. In
Tables 4-8, the effect of the ratio of the thickness of the
core to the face sheet thickness

(
c

ht

)
is studied. The

first four natural frequencies are obtained for different
distributions of carbon nanotubes. In these tables, car-
bon nanotubes volume fraction is considered equal to
0.12 with a stiff core.
Table 4
Natural frequency (Hz) for UD distribution in terms of

(
c

ht

)
.(

c

ht

)
First
mode

Second
mode

Third
mode

Fourth
mode

4 1824.02 6598.59 13277.32 21277.43
6 1613.47 6092.34 12696.08 20780.68
8 1502.77 5767.55 12229.16 20291.96
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Table 5
Natural frequency (Hz) for FG-O distribution in terms of

(
c

ht

)
.(

c

ht

)
First
mode

Second
mode

Third
mode

Fourth
mode

4 1822.97 6600.40 13246.07 21133.48
6 1612.81 6093.58 12694.06 20747.37
8 1502.39 5767.97 12230.53 20285.16

It can be seen from Tables 4 through 8 that, re-
gardless of the distribution of carbon nanotubes, as
the thickness of the face sheets increases, the natural
frequency of the system also increases. The reason is
that as the thickness of the faces increases, the total
stiffness of the structures increases. Moreover, accord-
ing to these tables, it can be observed that the FG-V
distribution of the carbon nanotubes leads to the high-
est natural frequency and the FG-Λ distribution leads
to the lowest natural frequency. In Figs. 3 to 7, the
modal displacement, wt, for different distributions of
carbon nanotubes is drawn.

Fig. 3. wt vibrational mod for UD distribution.

Fig. 4. wt vibrational mod for FG-O distribution.

Fig. 5. wt vibrational mod for FG-X distribution.

Fig. 6. wt vibrational mod for FG-V distribution.

Fig. 7. wt vibrational mod for FG-Λ distribution.
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Table 6
Natural frequency (Hz) for FG-X distribution in terms of

(
c

ht

)
.(

c

ht

)
First
mode

Second
mode

Third
mode

Fourth
mode

4 1825.69 6602.65 13318.70 21418.95
6 1614.33 6093.63 12705.77 20824.84
8 1503.24 5768.38 12232.31 20307.67

Table 7
Natural frequency (Hz) for FG-V distribution in terms of

(
c

ht

)
.(

c

ht

)
First
mode

Second
mode

Third
mode

Fourth
mode

4 1861.44 6510.32 12820.12 20345.52
6 1639.40 6085.89 12489.50 20242.42
8 1520.59 5782.53 12139.05 19983.42

In Tables 9 to 13, the effect of the volume fraction of
carbon nanotubes on the first four natural frequencies
for the simply supported boundary conditions and the
various distributions of carbon nanotubes is expressed.
In these tables, the ratio of core thickness to the face
sheet thickness is c

ht
= 4, and the results are expressed

for three volumes of carbon nanotubes.
Table 8
Natural frequency (Hz) for FG-Λ distribution in terms of

(
c

ht

)
.(

c

ht

)
First
mode

Second
mode

Third
mode

Fourth
mode

4 1774.63 6627.30 13649.64 22118.89
6 1583.24 6064.80 12825.24 21216.17
8 1483.02 5733.83 12264.48 20508.44

Table 9
Natural frequency (Hz) for UD distribution in terms of v∗cn.
v∗cn First

mode
Second
mode

Third
mode

Fourth
mode

0.12 1824.02 6598.59 13277.32 21277.43
0.17 2077.95 7465.89 14843.34 23464.26
0.28 2456.94 8489.18 16379.37 25414.01

Table 10
Natural frequency (Hz) for FG-O distribution in terms of v∗cn.
v∗cn First

mode
Second
mode

Third
mode

Fourth
mode

0.12 1822.97 6600.40 13246.07 21133.48
0.17 2076.64 7473.65 14832.59 23349.63
0.28 2460.65 8531.55 16404.86 25274.91

Table 11
Natural frequency (Hz) for FG-X distribution in terms of v∗cn.
v∗cn First

mode
Second
mode

Third
mode

Fourth
mode

0.12 1825.69 6602.65 13318.70 21418.95
0.17 2080.89 7474.18 14893.01 23624.53
0.28 2464.43 8539.92 16561.96 25824.23

Table 12
Natural frequency (Hz) for FG-V distribution in terms of v∗cn.
v∗cn First

mode
Second
mode

Third
mode

Fourth
mode

0.12 1861.44 6510.32 12820.12 20345.52
0.17 2133.02 7400.98 14348.02 22381.01
0.28 2516.87 8334.61 15644.06 23940.54

Table 13
Natural frequency (Hz) for FG-Λ distribution in terms of v∗cn.
v∗cn First

mode
Second
mode

Third
mode

Fourth
mode

0.12 1774.63 6627.30 13649.64 22118.89
0.17 2009.14 7460.56 15230.91 24426.75
0.28 2383.95 8623.74 17149.25 26939.59

As can be seen in Tables 9 through 13, regardless
of distributions of carbon nanotubes, the natural fre-
quency increases by increasing the volume fraction of
carbon nanotubes. This is because the elasticity mod-
ulus of the carbon nanotubes is larger than the rest of
the components, therefore increasing the volume frac-
tion of the carbon nanotubes increases the stiffness of
the whole beam. Therefore, the natural frequency of
the system increases. From the results of Table 9-13, it
is evident that, regardless of the variation of the carbon
volume fraction, the maximum natural frequency of the
first mode is related to the FG-V distribution mode and
the lowest natural frequency of the first mode is related
to the FG-Λ distribution state. Considering the use of
a stiff core in this paper, the results are for a state in
which the axial stresses of the core is considered along
the length of the beam. In Table 14 for the distribution
of FG-X carbon nanotubes, v∗cn = 0.12 and c

ht
= 4,

shows the effect of axial stresses of the core on the first
four natural frequencies.
Table 14
Natural frequency (Hz) for considering and not considering the
axial stresses of the core along the length of the beam.

First
mode

Second
mode

Third
mode

Fourth
mode

σc
xx ̸= 0 1825.69 6602.65 13318.70 21418.95

σc
xx = 0 1471.02 5156.13 10044.06 15704.50

It is clear from Table 13 that the difference in the
first vibrational mode is 19.42%, which is due to the
fact that the normal stress of the core is not consid-
ered along the length of the beam. Therefore, due to
this great difference, which occurred for the stiff cores,
it can be concluded that the axial stresses of the core
(which is ignored in many researches) must be consid-
ered for robust analyses.

In this section, the analysis of free vibration of
sandwich beam with the face sheets with carbon nan-
otubes and flexible core is studied. For this purpose,
the values for the core are considered Ec = 6.89MPa,
ρc = 97kg/m3 and νc = 0.342. In Tables 15 to 19, the
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effect of the ratio of the thickness of the core to the face
sheet thickness of the first four natural frequencies for
the simply supported boundary conditions and the var-
ious distributions of carbon nanotubes is expressed. In
these tables, the carbon volume fraction is considered
to be v∗cn = 0.12.

Table 15
Natural frequency (Hz) for UD distribution in terms of

(
c

ht

)
.(

c

ht

)
First
mode

Second
mode

Third
mode

Fourth
mode

4 556.53 1891.32 3880.61 6290.15
6 450.70 1367.32 2786.24 4621.36
8 421.37 1134.96 2219.52 3654.57

Table 16
Natural frequency (Hz) for FG-O distribution in terms of

(
c

ht

)
.(

c

ht

)
First
mode

Second
mode

Third
mode

Fourth
mode

4 452.43 1451.82 3003.58 4996.61
6 397.85 1093.04 2161.92 3585.13
8 391.96 958.28 1777.35 2865.16

Table 17
Natural frequency (Hz) for FG-X distribution in terms of

(
c

ht

)
.(

c

ht

)
First
mode

Second
mode

Third
mode

Fourth
mode

4 641.74 2213.56 4466.77 7078.31
6 497.39 1584.76 3246.18 5334.54
8 448.67 1283.54 2565.95 4237.92

Table 18
Natural frequency (Hz) for FG-V distribution in terms of

(
c

ht

)
.(

c

ht

)
First
mode

Second
mode

Third
mode

Fourth
mode

4 503.70 1639.08 3375.32 5556.00
6 429.45 1214.90 2426.04 4022.04
8 413.99 1042.32 1968.31 3197.79

Table 19
Natural frequency (Hz) for FG-Λ distribution in terms of

(
c

ht

)
.(

c

ht

)
First
mode

Second
mode

Third
mode

Fourth
mode

4 480.44 1612.71 3349.44 5531.25
6 405.22 1181.93 2390.77 3986.48
8 391.18 1006.75 1927.22 3154.46

It can be seen from Tables 15 through 19 that, re-
gardless of the distribution of carbon nanotubes, as
the thickness of the face sheets increases, the natural
frequency of the system increases too. Additionally,
according to the results in Tables 15 to 19, it can be
seen that the maximum natural frequency is related

to the FG-X distribution mode and the lowest natural
frequency corresponds to the FG-O distribution mode.

Fig. 8. Ut vibrational mod for UD distribution.

Fig. 9. Ut vibrational mod for FG-O distribution.
In Figs. 8 to 12, the modal displacement of the vi-

brational mode, Ut, is drawn for the upper face sheets
of the various distributions of the carbon nanotubes for
the case v∗cn = 0.12 and c

ht
= 4.

Fig. 10. Ut vibrational mod for FG-X distribution.

Journal of Stress Analysis/ Vol. 3, No. 2/ Autumn − Winter 2018-19 11



Fig. 11. Ut vibrational mod for FG-V distribution.

Fig. 12. Ut vibrational mod for FG-Λ distribution.

In Tables 20 to 24, the effect of the carbon nan-
otubes on four natural frequencies for simply supported
boundary conditions and different distributions of car-
bon nanotubes is expressed. In these tables, the ratio
of the thickness of the core to the face sheet thickness
is c

ht
= 4, and the results for three volume fractions of

carbon nanotubes is expressed.
Table 20
Natural frequency (Hz) for UD distribution in terms of v∗cn.

v∗cn
First
mode

Second
mode

Third
mode

Fourth
mode

0.12 556.53 1891.32 3880.61 6290.15
0.17 639.40 2254.89 4691.68 7660.87
0.28 769.69 2754.30 5643.38 9001.91

Table 21
Natural frequency (Hz) for FG-O distribution in terms of v∗cn.

v∗cn
First
mode

Second
mode

Third
mode

Fourth
mode

0.12 452.43 1451.82 3003.58 4996.61
0.17 504.43 1699.84 3578.74 6009.31
0.28 590.32 2071.62 4364.43 7251.34

Table 22
Natural frequency (Hz) for FG-X distribution in terms of v∗cn.

v∗cn
First
mode

Second
mode

Third
mode

Fourth
mode

0.12 641.74 2213.56 4466.77 7078.31
0.17 748.06 2663.04 5447.36 8687.46
0.28 911.05 3252.44 6517.42 10119.12

Table 23
Natural frequency (Hz) for FG-V distribution in terms of v∗cn.

v∗cn
First
mode

Second
mode

Third
mode

Fourth
mode

0.12 503.70 1639.08 3375.32 5556.00
0.17 565.82 1928.39 4038.90 6709.97
0.28 666.82 2350.54 4904.12 8030.19

As shown in Tables 20 to 24, regardless of the dif-
ferent distributions of carbon nanotubes, the natural
frequency increases by increasing the nanotubes vol-
ume fraction. From the review of the results in Tables
20 to 24, it is clear that regardless of the variation of
the carbon volume fraction, the highest natural fre-
quency of the first mode is related to the FG-X distri-
bution mode, and the lowest natural frequency of the
first modulus is in the distribution of FG-Λ.
Table 24
Natural frequency (Hz) for FG-Λ distribution in terms of v∗cn.

v∗cn
First
mode

Second
mode

Third
mode

Fourth
mode

0.12 480.44 1612.71 3349.44 5531.25
0.17 545.05 1905.64 4016.58 6688.28
0.28 649.56 2332.61 4886.90 8013.38

8. Conclusions

In this study, the free vibrations of sandwich beams
with carbon nanotubes and hard and flexible core were
investigated. Timoshenko’s theory was used to model
the face sheets and the compatibility conditions were
applied for continuity of the displacement field between
the core and the face sheets. Finally, using the varia-
tion of energy, the equations of motion of the system
were obtained. In this study, the face sheets were con-
sidered as composite reinforced with different distribu-
tions of carbon nanotubes. In this research, due to the
high order displacement field of the core, the flexibility
of the core can be seen in the modeling. Since the term
σc
xx of the core is also considered in the strain energy,

a stiff core can be modeled. In many works the σc
xx

is removed from equations, therefore according to the
results of sandwich beam with stiff core it can be seen
that if the σc

xx is removed from equations, lots of er-
rors will observed. Therefore, a proposed theory in this
research can easily model a sandwich beam with two
types of stiff and flexible cores. Numerical results for
different volume fractions of carbon for different distri-
butions were investigated. The effect of the geometry
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of the beam, such as core thickness, face sheets thick-
ness, etc. was studied on the natural frequency of the
system, which yielded the following results:

• Regarding the study of the effect of the distribu-
tion of nanotubes on face sheets, it is clear that
the highest natural frequency of the first mode
for the stiff core is related to the FG-V distribu-
tion and for the flexible coreit is related to the
FG-X distribution.

• The results show that, the lowest natural fre-
quency of the first mode for the stiff core is re-
lated to the FG-Λ distribution and the FG-O dis-
tribution for the flexible core.

• Due to the core displacement field, a flexible core
can be modeled and this displacement field is
used in high order theory.

• High order theory is suitable theory for flexible
and stiff core.

• Out of the results, it is clear that high order the-
ory has good accuracy.

• The results show that for stiff cores, disregard-
ing the axial stresses of the core, which is carried
out in many studies, leads to large error in the
results.

• The results also show that extended higher order
theory is a suitable model for analyzing a stiff
and flexible core sandwich panel.

• As the numerical results show, the natural fre-
quency of the sandwich beam in all the different
distributions of carbon nanotubes decreases with
the increase of the core-to-face sheet thickness
ratio, which is due to the reduction of the total
stiffness of the structures.

• By increasing the nanotubes volume fraction, the
natural frequency of the system increases.

• By examining the results, it is clear that the vol-
ume fraction of carbon nanotubes has the high-
est effect and the ratio of the core-to-face sheet
thickness ratio has the least effect on the normal
frequency of the system.
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