| تعداد نشریات | 22 |
| تعداد شمارهها | 512 |
| تعداد مقالات | 5,398 |
| تعداد مشاهده مقاله | 10,402,818 |
| تعداد دریافت فایل اصل مقاله | 6,914,467 |
Energy Audit in Greenhouse Grown Cucumber – a Case Study in Hamedan Province, Iran | ||
| Biosystems Engineering and Sustainable Technologies | ||
| دوره 1، شماره 2، اسفند 2025، صفحه 31-37 | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22084/best.2025.31438.1010 | ||
| نویسندگان | ||
| Mohammadbagher Lak* 1؛ Tayebeh Nayerifard2 | ||
| 1Department of Biosystems Engineering, Pishgaman Zistsamaneh Hooshmand Ltd. Hamedan, Iran. | ||
| 2Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran. | ||
| چکیده | ||
| This paper is a case study on auditing energy and water used in greenhouse-grown cucumber production. The study has been done under real conditions in Hamedan a western province of Iran with harsh winters. Here, all the procedures of production from land preparation to harvest and finally the removal of residues were recorded. The fruit produced per square meter of covered area was 10.07 kg m-2. Moreover, the parameters of energy consumption, energy output, net energy gain, specific energy, energy productivity, and energy use efficiency were 5.05 MJ, 18,560 MJ, -5.03 MJ, 217.60 MJ kg-1, 0.0046 kg MJ-1, and 0.0037, respectively. Water productivity was also 39.42 kg m-3. The indicators obtained in this study showed the effect of surrounding environmental parameters on the performance in comparison with the literature. Additionally, it is estimated that to provide solar-based electricity for this greenhouse, roughly 110 square meters of solar panels are required. | ||
| کلیدواژهها | ||
| Production Performance؛ Photovoltaic Panels؛ Assessment Indicators | ||
| مراجع | ||
|
[1] Ahmadbeyki, A., Ghahderijani, M., Borghaee, A., & Bakhoda, H. (2023). Energy use and environmental 1. A governmental program to manage electricity in Iran. impacts analysis of greenhouse crops production using life cycle assessment approach: A case study of cucumber and tomato from Tehran province, Iran. Energy Reports, 9, 988-999.
[2] Alamdari, P., Nematollahi, O., & Alemrajabi, A. (2013). Solar energy potentials in Iran: A review. Renewable and Sustainable Energy Reviews, 21, 778-788.
[3] Ali, Q., M., R., Tariq, M., & Khan, I. (2019). Energy budgeting and greenhouse gas emission in cucumber under tunnel farming in Punjab, Pakistan. Scientia Horticulturae, 250, 168-173. [4] Anonymous. (2024). Exclusion of industries from load management programs. TAVANIR.
[5] Aravindan, M., & Kumar, G. (2023). Hydrogen towards sustainable transition: a review of production, economic, environmental impact, and scaling factors. Results Engineering, 20.
[6] Azadi, H., Houshyar, E., Zarafshani, K., G., H., & Witlox, F. (2013). Agricultural outsourcing: a two-headed coin. Global and Planetary Change, 1000, 20-27.
[7] Baruah, D. C., G.C., G., & Bora, C. (2008). Energy demand forecast for mechanized agriculture in rural India. Energy Policy, 36, 2628-2636.
[8] Freedman, B. (2018). Chapter 12: Resources and Sustainable Development. In Environmental Science: a Canadian perspective.
[9] Gagnon, L. (2008). Civilisation and energy payback. Energy Policy, 36, 3317-3322.
[10] Ghaffarpour, Z., Fakhroleslam, M., & Amidpour, M. (2024). Calculation of energy consumption, tomato yield, and electricity generation in a PV-integrated greenhouse with different solar panel configurations. Renewable Energy, 229, 120723. https://doi.org/https:// doi.org/10.1016/j.renene.2024.120723
[11] Ghasemimobtaker, H., Keyhani, A., Mohammadi, A., Rafiee, S., & Akram, A. (2010). Sensitivity analysis of energy inputs for barley production in Hamedan province of Iran. Agriculture, Ecosystems and Environment, 137, 367-372.
[12] Gong, L., Yu, M., & Kollias, S. (2023). Optimizing Crop Yield and Reducing Energy Consumption in Greenhouse Control Using PSO-MPC Algorithm. Algorithms, 16(243), 11.
[13] Hesampour, R., Taki, M., Fathi, R., Hassani, M., & Halog, A. (2022). Energy-economic-environmental cycle evaluation comparing two polyethylene and polycarbonate plastic greenhouses in cucumber production (from production to packaging and distribution). Science of the Total Environment, 828, 17.
[14] Kaur, A., Sonawane, V., & Rosha, P. (2024). Energy efficiency optimization strategies for greenhouse-based crop cultivation: A review. The Canadian Journal of Chemical Engineering, 102(3), 1051-1065. https://doi.org/https://doi.org/10.1002/cjce.25131.
[15] Khessro, M. K., Hilal, Y. Y., Al-Jawadi, R. A., & AlIrhayim, M. N. (2022). Greenhouse energy analysis and neural networks modelling in Northern Iraq. Acta Technologica Agriculturae, 4, 205-210.
[16] Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H., & Clark, S. (2013). Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. Journal of Cleaner Production, 73, 183-192.
[17] Lak, M., & Almasi, M. (2011). An analytical review of parameters and indices affecting decision-making in agricultural mechanization. Australian Journal of Agricultural Engineering, 2(5), 140-146.
[18] Mandal, K. G., Saha, K. P., Gosh, P. L., Hati, K. M., & Bandyopadhyay, K. K. (2002). Bioenergy and economic analysis of soybean-based crop production systems in central India. Biomass Bioenergy, 23, 337-345. [19] Mohammadi, A., & Omid, M. (2010). Economic analysis and the relation between energy inputs and yield of greenhouse cucumber production in Iran. Applied Energy, 87, 191-196.
[20] Morovat, H., Faridzad, A., & Lowni, S. (2019). Estimating the Elasticity of Electricity Demand in Iran: A Sectoral-Province Approach. Iranian Economic Review, 23(4), 861-881.
[21] Ortiz, O., Orrego, R., Pradel, W., Gildemacher, P., Castillo, R., Otiniano, R., Gabriel, J., Vallejo, J., Torres, O., Woldegiorgis, G., Damene, B., Kakuhenzire, R., I., K., & Kahiu, I. (20013). Insights into potato innovation systems in Bolivia, Ethiopia, Peru and Uganda. Agricultural Systems, 114, 73-83.
[22] Ozkan, B., Fert, C., & C.F., K. (2007). Energy and cost analysis for greenhouse and open-field grape production. Energy, 32(8), 1500-1504.
[23] Rahimi Ajdadi, F., & Abbaspour-Gilandeh, A. (2011). Artificial neural network and stepwise multiple range regression methods for the prediction of tractor fuel consumption. Measurement, 44, 2104-2111.
[24] Rashidi, K., Azizpanah, A., Fathi, R., & Taki, M. (2024). Efficiency and sustainability: Evaluating and optimizing energy use and environmental impact in cucumber production. Environmental and Sustainability Indicators, 22, 12.
[25] Rizwan, A., Khan, A. N., Ahmad, R., & Kim, D. H. (2023). Optimal Environment Control Mechanism Based on OCF Connectivity for Efficient Energy Consumption in Greenhouse. IEEE Internet of Things Journal, 10(6), 5035-5049. https://doi.org/10.1109/JIOT.2022.3222086
[26] Saadi, H., Behnia, M., Taki, M., & Kaab, A. (2025). A comparative study on energy use and environmental impacts in various greenhouse models for vegetable cultivation. Environmental and Sustainability Indicators, 25, 15.
[27] Shadidi, M., Nayerifard, T., & Lak, M. (2024). Prospects of renewable energy in the agricultural sector of Iran: a roadmap for a sustainable future. International Journal of Ambient Energy, 46(1), 15.
[28] Taki, M., & Yildizhan, H. (2018). Evaluation of the sustainable energy applications for fruit and vegetable production processes; case study: greenhouse cucumber production. Journal of Cleaner Production, 199164-172.
[29] Timonen, K., Sinkko, T., Luostarinen, S., Tampio, E., & Joensuu, K. (2019). LCA of anaerobic digestion: Emission allocation for energy and digestate. Journal of Cleaner Production, 235, 1567-1579. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.06.085
[30] Wang, J., & Azam, W. (2024). Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top top-emitting countries. Geoscience Frontiers, 15, 15.
[31] Yakub, A. O., Adesanya, M. A., Same, N. N., Rabiu, A., Chaulagain, D., Ogunlowo, Q. O., Owolabi, A. B., Park, J., Lim, J. O., Lee, H. W., & Huh, J. S. (2024). Enhancing sustainable and climate-resilient agriculture: Optimization of greenhouse energy consumption through microgrid systems utilizing advanced meta-heuristic algorithms. Energy Strategy Reviews, 54, 18.
[32] Yilmaz, I., Akcaoz, H., & Ozkan, B. (2004). An analysis of energy use and input costs of cotton production in Turkey. New Medit, 2, 7. | ||
|
آمار تعداد مشاهده مقاله: 22 |
||