
Journal Homepage: www.best.basu.ac.ir/ 
BEST J., 2(1) (2025) 21-29

DOI: https://doi.org/10.22084/best.2025.31229.1009

Comparative Study between the Gravitational Search Algorithm and Fire Hawk 
Algorithm in an Off-Road Seat Suspension Optimization
Mohammad  Gohari 1 * , Mona Tahmasebi 2 , Mohammad Mobarakabadi 1 

1 Faculty of Mechanical Engineering, Arak University of Technology, Arak, Iran.
2 Department of Agricultural Engineering, Markazi Agricultural and Natural Resources Research and Education Center, Agricultural 
Research, Education and Extension, Organization (AREEO), Arak, Iran.

Long-term driving of Off-Road Vehicles increases the risk of damage to some organs of humans, such 
as the spinal column or digestive system.  Whereas seat suspensions are used in heavy-duty off-road 
vehicles, adjusting the parameters of them is crucial. Recently, non-gradient optimization methods have 
been focused on by researchers to tune these parameters, such as spring constant, damper coefficient, and 
seat pan mass. Current work represents the application of two Meta-Heuristic techniques (Gravitational 
Search (GSA)and Fire Hawk Optimization Algorithms (FHOA)) to minimize transmitted vibration from 
the cabin floor to the seat pan.  According to the GSA, the amplitude of seat displacement is around 2×
10-5 (m). Moreover, the first peak is reached at 0.95× 10-5 at 8Hz. In addition, according to the FHOA, the 
magnitude of output via FHOA optimum parameters is 0.8× 10-5, in the time domain. On the other hand, 
in the frequency domain, the first peak is gotten 4.2× 10-6. So, it shows that the performance of passive 
seat suspension, which is adjusted with GSA, is more enhanced in comparison to FHOA. In conclusion, 
the outcomes of optimization via simulation show that GSA has a better performance compared to 
FHOA, and the seat suspension tuned by that can diminish the vibration with notable diminishment. 
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1. Introduction

The human body can be harmed from transmitted vibration 
from external sources such as vehicles, excavation devices, 
pneumatic pick hammers, etc. This unwanted vibration can 
damage to spine column, eye, heart, and digestive system 
based on the dominant frequency of vibration (Wikström et 
al., 1994). With the industrialization of human life and the 
wide range of vehicles used in daily life, the risk of these 
harmful problems has increased drastically (Linan et al.,   
2008, Yanxi & Qingxia, 2010). When a human is exposed 
to unwanted vibration in the short term, the heart rate may 
be increased, or muscle tension can be created. In the long 
term, serious problems can be accrued, such as abnormality 
in spine vertebrates or malfunction in the urinary and 
digestive system (Paddan & Gri, 2002, Bainbridge et al., 
2025 & Qiao et al., 2025). Heavy-duty off-road vehicles 
such as loaders, graders, bulldozers, and agricultural tractors 
employ seat suspension to isolate the driver’s body from 
unwanted vibration because most of them do not use primary 
suspension. Moreover, most heavy-duty off-road vehicle 
seat suspensions are passive because to cost of active seat 

suspensions is high. Thus, parameter design of suspension 
is very crucial, and many researchers are focused on that 
to find the optimum coefficients. Commonly, a passive seat 
suspension consists of a spring, damper, and seat pan mass 
(Barton & Fieldhouse, 2024). Previously, some researchers 
have utilized mathematical optimization methods for this 
purpose (Yan et al., 2015, Maniowski, 2014 & Pazooki et al., 
2012).

The performance and accuracy of optimization are a 
crucial aspect of engineering, science, and decision-making, 
where the goal is to find the best possible solution under given 
constraints. Traditional mathematical optimization methods, 
such as gradient-based techniques, linear programming, and 
Newton-based approaches, are effective but often struggle 
with complex, non-linear, multi-modal, and high-dimensional 
problems. In contrast, evolutionary algorithms (EAs), inspired 
by natural selection and biological evolution, have emerged as 
powerful alternatives for solving such complex optimization 
problems. Common evolutionary algorithms include Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), 
Ant Colony Optimization (ACO), etc.  The GA mimics the 
process of natural selection, using operators like selection, 
crossover, and mutation to evolve solutions over multiple 
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generations. The PSO is inspired by the social behavior of 
birds and fish, where particles (potential solutions) adjust 
their positions based on their own best experience and the 
swarm’s collective intelligence. ACO is based on the foraging 
behavior of ants, using pheromone trails to find the optimal 
paths in a problem space. Unlike gradient-based methods, 
which may get trapped in local optima, EAs perform global 
searches, making them more suitable for non-convex and 
multi-modal problems. Moreover, Mathematical optimization 
often requires derivatives of the objective function, which 
may not be available or computationally feasible. EAs do not 
require gradient information, making them highly flexible. 
Furthermore, Evolutionary algorithms can efficiently explore 
large search spaces and handle problems with many variables.  
Also, EAs, such as NSGA-II (Non-dominated Sorting Genetic 
Algorithm), are well-suited for multi-objective optimization, 
where multiple conflicting objectives must be optimized 
simultaneously.

Based on EAs aspects, novel evolutionary optimization 
techniques have been utilized recently by designers for 
seat suspension optimization, such as genetic algorithm, 
particle swarm algorithm or artificial neural network 
(Abbas et al., 2013, Gadhvi et al., 2016, Gad et al., 2017, 
Gohari & Tahmasebi, 2022, & Gohari et al., 2011). Three 
Meta-Heuristic methods of optimization (GA, PSO, and 
HS) were tested in passive seat suspension, and results 
show that the Harmonic Search Algorithm reached 
better parameters based on verification by computerized 
evaluation (Gohari & Tahmasebi, 2014), although the 
optimized values were close to particle swarm optimization 
(PSO) (Gohari et al., 2013). In addition, these evolutionary 
methods are applied to active seat suspensions (Zhang et 
al., 2024, Gad et al., 2025, & Zhao et al., 2024).

The current study aims to find feasible parameters of seat 
suspension via new EAs techniques, including Fire Hawk 
(FHOA), and Gravitational Search Algorithm (GSA), and 

verify the results by a simulation study. The main aim of this 
work is to study the performance of GSA and FHOA in finding 
global optimum values and checking the feasibility of the 
found values. Comparison study of the result of this study to 
the other method unveils the cores and pones of these methods. 

2. Materials and Methods

To optimize the seat suspension via GSA and FHOA, 
firstly, a transfer function is considered for this structure, 
which is shown in Fig.1. In fact, the vibration transmissibility 
is taken as the objective function. Three parameters are 
unknown and must be identified based on the optimization 
method: seat pan mass(m), spring constant (K), and damper 
coefficient (C). Three constraints are set in these ranges 
because they are commercially available in the market:
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The output of the transfer function is reached when a 
sinusoidal signal is applied to the system, and the response 
of that is calculated. The frequency of the excitation (input) 
signal is 8 Hz, and the amplitude that 10e-3(m). 

2.1. GSA Optimization

The Gravitational Search Algorithm (GSA) is a 
nature-inspired optimization method introduced by Rashedi, 
Nezamabadi-Pour, and Saryazdi in 2009. It is based on 
Newton’s law of gravity and motion, where candidate 

 

Fig.1 The seat suspension parameters and corresponding transfer function   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The seat suspension parameters and corresponding transfer function.  
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solutions (agents) interact through gravitational forces. 
GSA is classified as a metaheuristic optimization 
algorithm and is widely used in solving complex 
optimization problems, including engineering design, 
machine learning, scheduling, and control systems. GSA 
simulates the movement of objects under the influence of 
gravity. Each solution in the search space is considered 
as an agent (mass) that attracts other agents based on 
their fitness value (similar to gravitational force). The 
fundamental steps in GSA are as follows:

1. Agent Representation
•	 Each agent (candidate solution) is considered as an object 

with a certain mass.
•	 Agents with better fitness values have higher masses, 

meaning they exert a stronger gravitational force on 
others.

2. Fitness-Based Attraction
•	 Heavier agents (better solutions) attract lighter agents, 

guiding them towards potentially optimal solutions.
•	 Over time, solutions converge towards the best possible 

solution through collective movement.

3. Updating Position and Velocity
•	 The acceleration of each agent is computed based on the 

total gravitational force acting on it.
•	 Agents update their positions dynamically, simulating the 

natural attraction of objects under gravity.

2.1.1. Mathematical Formulation of GSA

Gravitational Constant (G), The strength of attraction 
decreases over time:

10 100 NsC
m

 
 
 

 

1000 10000 NK
m

 
 
 

 

 1 20 m Kg  

 

  0

t
TG t G e


                                                                                                                                              (1) 

 

i worst
i

best worst

f fM
f f





                                                                                                                                           (2) 

 

 i j
ij j i

ij

M M
F G X X

R 
 


                                                                                                                                  (3) 

 

i
i

i

Fa
M

                                                                                                                                (4) 

 

     1i i iV t rV t a t                                                                                               (5) 

 

     1 1i i iX t X t V t                                                                                                (6) 

 

   0.5new i best iX X rand n X X                                                                                  (7) 

 

   1t t
i i best iX X X X                                                                                                           (8) 

 

 

 (1)

Where G0 is the initial gravitational constant, α is a decay 
factor, t is the current iteration, and T is the total iterations. 
The mass of each agent is determined based on its fitness:
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Where fi ​ is the fitness of the agent, and fbest and fworst ​ 
represent the best and worst fitness values in the population.

The force exerted by an agent j on agent i is given by:
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The acceleration of agent i is calculated as:
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Where Rij is the Euclidean distance between agents, and ε 
is a small constant to prevent division by zero.

The velocity of each agent is updated as follows:
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Also, the position is updated based on velocity:
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Where r is a random number in the range [0,1] to introduce 
stochastic behavior. GSA dynamically adjusts the attraction 
forces, allowing efficient exploration in early stages and 
convergence in later stages. Unlike gradient-based methods, 
GSA can handle non-differentiable, complex, and multi-
modal functions. 

2.2. Fire Hawk Optimization Algorithm

The Fire Hawk Optimization Algorithm (FHOA) 
is a nature-inspired metaheuristic algorithm that mimics 
the hunting strategy and survival behavior of fire hawks, a 
species of raptors found primarily in Australia. Fire hawks are 
known for their unique and intelligent behavior of spreading 
fire intentionally to flush out prey from their hiding spots. 
This remarkable strategy of using controlled fires to optimize 
hunting efficiency inspired the development of the FHOA, 
which is designed to solve complex optimization problems in 
various fields, including engineering, machine learning, and 
control systems.

In nature, fire hawks exhibit two key behaviors:
1. Fire Spreading: Fire hawks pick up burning sticks and 

drop them in dry areas to start controlled fires. This forces 
prey (small animals, insects, etc.) to flee from their shelters, 
making them easier to catch.

2. Hunting Strategy: Fire hawks actively search for prey 
in both burned and unburned areas, adapting their strategy 
based on environmental conditions.

The Fire Hawk Optimization Algorithm translates 
these natural behaviors into mathematical models for solving 
optimization problems. The process of spreading fire and 
adapting to dynamic environments provides a balance 
between exploration (searching new areas) and exploitation 
(refining existing solutions). 

The key components of the FHOA are population 
initialization, fire spreading mechanism, hunting and prey 
capture(Exploitation), and adaptation strategy. 
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2.2.1. Mathematical Formulation of FHOA

a. Initialization:
Firstly, the definition of the population size (N), the 

maximum number of iterations (T), and problem boundaries 
must be considered.

Then, the random initialization of the positions of fire 
hawks (Xi) within the search space must be done. In this 
optimization, the initial population of hawks is 30, and 100 
iterations are executed. 

b. Fitness Evaluation:
Each fire hawk’s position represents a candidate solution, 

and the evaluation of the fitness function will be applied to 
determine the quality of each solution.

c. Fire Spreading (Exploration):
Normally, generating new candidate solutions is executed 

by perturbing current positions:
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Where α is a control parameter, rand( n) is a random 
number between 0 and 1, and Xbest the current best solution.

d. Hunting Strategy (Exploitation):
The fire hawk position is adjusted to move closer to the 

best-known solution:
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Where β is an exploitation factor that decreases over time, 
focusing on fine-tuning solutions.

e. Adaptation Mechanism:
Dynamic adjustment of exploration and exploitation 

parameters is done as the algorithm progresses to ensure 
convergence to the optimal solution.

f. Termination Criteria:
The algorithm terminates when the maximum number 

of iterations is reached or when the improvement between 

successive iterations falls below a threshold. Generally, 
the exploration capability of the FHOA is higher than 
PSO or GA, while the convergence speed is fast with low 
complexity. 

3. Results and Discussion

The primary objective of this study was to minimize 
vibration transmission from a vehicle seat to the human body 
by optimizing the seat’s mass, spring constant, and damper 
coefficient. The optimization was successfully performed 
using two distinct metaheuristic algorithms: the Fire Hawk 
Optimization Algorithm (FHOA) and the Gravitational Search 
Algorithm (GSA). The results presented in Table 1 reveal 
that while both algorithms converged on viable solutions, 
they identified distinctly different parameter sets. This 
section interprets these findings, evaluates the algorithms’ 
performance, and considers the practical implications of the 
optimized designs.

The optimum points of the cost function are reached by 
two techniques: the Gravitational Search Algorithm and the 
Fire Hawk Optimization Algorithm. As mentioned before, 
three parameters are formulated in the problem definition to 
minimize transmitted vibration from vehicle to human body: 
Mass, spring constant, and damper coefficient. Table 1 shows 
the reached parameters by the GSA and FHOA algorithms.

The parameter sets obtained by FHOA and GSA suggest 
two different philosophical approaches to vibration isolation. 
The FHOA solution proposes a markedly lighter seat pan 
(1.15 kg vs. 2.66 kg) with a significantly softer spring constant 
(2868 N/m vs. 6754 N/m) and a lower damping coefficient 
(10 Ns/m vs. 22.22 Ns/m). This configuration likely aims 
to create a highly isolated system where the seat’s natural 
frequency is tuned well below the dominant input frequency 
(8 Hz), leveraging the isolation region of the transmissibility 
curve. The low damping preserves this isolation effect, as 
excessive damping can degrade isolation performance at 
higher frequencies.

Conversely, the GSA solution proposes a heavier, stiffer, 
and more heavily damped system. This design may prioritize 
limiting the maximum displacement (rattle space) of the seat, 
a critical practical constraint in vehicle design. The higher 
damping is particularly effective at suppressing resonance 
amplitudes, which might be a strategic choice if the input 

Table 1. The optimum parameters which are obtained by two algorithmsTable 1. The optimum parameters which are obtained by two algorithms  

Parameter FHOA GSA 

Seat Pan Mass (KG) 1.1477 2.6551 

Damper Coefficient (NS/M) 10 22.2173 

Spring Constant (N/M) 2868.0921 6754.2518 
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vibration spectrum is broad or if there is a risk of the system 
passing through resonance during transient events. The 
significant discrepancy in solutions highlights a classic trade-
off in suspension design: the conflict between achieving 
excellent isolation (favored by soft springs and low damping) 
and controlling static deflection and resonant amplification 
(favored by stiffer springs and higher damping).

3.1. Algorithm Performance and Convergence

The convergence behavior, as illustrated in Fig. 2, is 
crucial for evaluating the efficacy of the FHOA. A rapid 
initial convergence followed by a stable plateau suggests 
that the FHOA is an efficient and robust optimizer for this 
engineering problem. It demonstrates a strong ability to escape 
local minima and navigate the complex, likely non-linear 
and high-dimensional, search space of the suspension design 
problem. While a direct comparison of convergence speed 
with GSA is not provided, the fact that both algorithms found 
valid yet different optima underscores a key characteristic 
of metaheuristics: their solution can be influenced by their 
unique exploitation/exploration mechanisms. The FHOA, 
inspired by the fire-seeking behavior of birds, may have a 
different exploratory profile compared to the mass-interaction 
principles of GSA, leading it to a different region of the 
solution space.

The convergence curve of optimization by FHOA is 
unveiled in Fig. 2. Also, the response of seat suspension to a 
sinusoidal signal in the time domain is demonstrated in Fig.3. 
The amplitude of that is around 2× 10-5 (m). Moreover, the 
first peak is reached at 0.95× 10-5 at 8Hz (Fig.4)

Fig.5 shows GSA finds the optimum parameters after 35 

iterations, while FHOA executed that faster. The magnitude 
of output via FHOA optimum parameters is 0.8× 10-5, in the 
time domain. On the other hand, in the frequency domain, 
the first peak is obtained at 4.2× 10-6. So, it shows that the 
performance of passive seat suspension, which is adjusted 
with GSA, is more enhanced in comparison to FHOA. 

In fact, the peak of the seat pan in the frequency domain 
identified by FHOA is 20 times greater than GSA. Thus, in 
practical modification, the seat suspension parameters must 
be adjusted and modified based on values that are optimized 
by GSA.

3.2.Vibration Isolation Performance

The performance of the optimized system, particularly 
the FHOA design, is exceptionally promising. A maximum 
amplitude of approximately 20 µm (Fig. 3) in response 
to a sinusoidal input is a remarkably low value, indicating 
superb vibration attenuation. The frequency response (Fig. 
4) confirms this, with a first peak transmissibility of only 
0.95× 10-5 at 8 Hz. This low transmissibility peak is the core 
achievement of the optimization, as it directly correlates to 
reduced vibration exposure for the occupant, which is linked 
to improved comfort, reduced fatigue, and lower health risks 
associated with long-term whole-body vibration.

3.3. Implications and Practical Considerations

From a practical standpoint, the FHOA solution appears 
highly attractive due to its lower mass, which aligns with the 
automotive industry’s relentless pursuit of weight reduction 
for improved fuel efficiency. However, the very soft spring 

 

Fig.2 The convergence curve of optimization by FHOA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The convergence curve of optimization by FHOA
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Fig.3 The response of the seat suspension when exposed to a sinusoidal signal in the time 
domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The response of the seat suspension when exposed to a sinusoidal signal in the time domain.

 

Fig.4 The peak of seat pan displacement in the frequency domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The peak of seat pan displacement in the frequency domain.
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Fig.5 The convergence curve of optimization by GSA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The convergence curve of optimization by GSA.

 

Fig.6 The displacement of the seat pan by a sinusoidal signal applied to the seat suspension, in 
the time domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The displacement of the seat pan by a sinusoidal signal applied to the seat suspension, 
in the time domain
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and low damping raise important questions about the system’s 
performance beyond the tested sinusoidal condition. Its 
behavior under large-amplitude transient inputs (e.g., driving 
over a pothole) or its susceptibility to bottoming out must be 
rigorously evaluated. The GSA solution, while heavier, offers 
a more conservative and potentially more robust design with 
its higher stiffness and damping.

3.4. Limitations and Future Work
This study has several limitations that point to valuable 

future research directions. The optimization relied on a single 
sinusoidal input and should be extended using standardized 
road profiles like ISO 8608 for real-world relevance. 
Furthermore, replacing the simplified human body model 
with an advanced biodynamic model and employing multi-
objective optimization would better capture the trade-offs 
between vibration isolation, seat travel, and mass[21].

4. Conclusion 
As mentioned previously, seat suspension plays a crucial 

role in shock and vibration absorption generated by road 
terrain for drivers of heavy-duty off-road vehicles. The 
identification of optimum parameters for seat suspension is 
necessary and has recently been applied by Metaheuristic 
approaches. Current work shows that minimum vibration 
may be transmitted to the driver’s body with optimized 
values via GSA, although FHOA executed optimization of 
the cost function faster with a lower number of iterations. 
In fact, GSA reduced seat pan vibration amplitude by 80% 
compared to FHOA. 

In conclusion, both the Fire Hawk Optimization Algorithm 

and the Gravitational Search Algorithm proved effective 
in solving the complex problem of vehicle seat vibration 
isolation, albeit arriving at different design optima. The FHOA-
produced design, characterized by low mass, stiffness, and 
damping, demonstrates exceptional theoretical performance 
for the given sinusoidal input and presents a compelling 
lightweight solution. The choice between the two designs 
ultimately depends on broader vehicle design constraints and 
the need for performance robustness across a wider range of 
operating conditions. This study successfully demonstrates 
the potent application of advanced metaheuristics in tackling 
fundamental engineering challenges in automotive comfort 
and design. In future work, these obtained values will be 
studied by an experimental test with real road unevenness. 
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