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Abstract

The stochastic finite element method is one of the most effective tools for
analyzing systems with uncertainty in computational stochastic mechanics.
In this research, a novel approach called the nonlinear spectral stochastic
finite element method (NSSFEM) was developed to analyze structures with
nonlinear materials. The proposed NSSFEM incorporates uncertainty in
both loads and elastic modulus. In the first step, the input random variables
are modeled using the operators of NSSFEM, and an appropriate number
of terms from the Karhunen-Loève expansion is selected. Next, the stiffness
matrix is formed, assuming linear material behavior as the problem-solving
begins. Subsequently, the responses are modeled as random processes and
expanded using polynomial chaos. During each increment of the solution
process, the stress state at the Gaussian points is checked before completing a
sub-increment. If the material yielding criteria are activated, the stresses are
modified according to plasticity conditions, thereby correcting the solutions.
This iterative process continues until the problem is fully resolved and the
desired solution is achieved. The displacements obtained through the proposed
NSSFEM demonstrate an impressive accuracy of 97% when compared with
results from the Monte Carlo method. The source code of the proposed
NSSFEM is available at https://github.com/seyedsajadmousavi/NSSFEM

Nomenclature

Ω Sample space σ Algebra in subsets Ω
P Probability measurements X A random variable
fx (x) Probability density function (PDF) µf(x) Mean of the random field
σf(x) Standard deviation λn Eigenvalues
ϕn(x) Eigenfunctions C(x1, x2) Covariance

k
(e)
0 mean stiffness Cep(x,θ) The elastoplastic hardness matrix
V (e) Volume of the element E Modulus of elasticity of the materials
dσ(x, θ) Stress increment dϵe(x, θ) Strain increment
∆k(e) Stochastic parts of the stochastic stiff-

ness matrix
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1. Introduction

1.1. Stochastic Approach in Analysis of Struc-
tures

Considering the realization of the scientific community
on the importance of the stochastic approach in en-
gineering problems and the significant effect of uncer-
tainties on the behavior of systems, powerful computa-
tional methods have been developed. These approaches
allow the analysis and design of a variety of engineer-
ing systems on a large scale with the help of power-
ful computing tools considering complex conditions in-
cluding the application of uncertainty. In structural
engineering, uncertainties can include structural inputs
such as material properties, geometry, boundary con-
ditions, or loading [1–6]. As the case may be, these
properties are described by statistical concepts such as
random variables, random processes, or random fields.
One of the most useful tools for analyzing systems with
uncertainties in computational stochastic mechanics is
the stochastic finite element method (SFEM), which is
based on the increment of the classical finite element
method (FEM). From a mathematical point of view,
SFEM can be considered a computational method for
solving stochastic partial differential equations [7–12].

1.2. Related Works

In several studies, the problems of convergence and er-
ror estimation of this method have been studied in
detail. In fact, these two aspects of SFEM are com-
plementary and interdependent. A fundamental prob-
lem in stochastic finite element modeling is the uncer-
tainty of system input parameters. The key point of
a problem-solving method is the stochastic finite el-
ement matrix formulation, which is divided into four
general categories based on the calculated technique
for modeling uncertainty: Monte Carlo simulation
(MCS), perturbation method, spectral decomposition
method, and weighted integral method. To obtain sys-
tem responses, several different SFEMs have been pro-
posed, including the Newman expansion, the Taylor-
turbulence series expansion method, the stochastic re-
sponse validation method, the Monte Carlo simula-
tion, and the spectral stochastic finite element method
(SSFEM) [13–16]. Due to its capacity to represent
a broad range of complicated situations, the Monte
Carlo simulation technique is a commonly used sim-
ulation approach [13]. The fundamental concept is to
construct samples based on the statistical features of
random variables, then solve differential equations with
stochastic partial derivatives using the finite element
technique to obtain a wide variety of solutions. Al-
though relatively accurate results can be obtained by
considering the appropriate number of samples, this
method is computationally expensive in the problems
with a large number of uncertain parameters as well

as large systems. On the other hand, in systems in
which the materials used have nonlinear behavior, it is
possible to achieve the solution by incremental meth-
ods, which itself requires a lot of computational costs.
Therefore, in these cases, finding methods that reduce
the computational volume will be inevitable [13]. Huo
et al. introduced a novel non-intrusive SFEM (NIS-
FEM) for usefully calculating stochastic responses and
reliabilities of structures. In the first step, the direct
probability integral approach (DPIM) was extended
to get the PDF of stochastic response by solution of
probability density integral equation (PDIE). Then,
the NISFEM using DPIM decoupled the classical FEM
and PDIE to compute the stochastic output and relia-
bilities of uncertain plates, and the discretization and
quantification of random fields of Young’s modulus and
thickness were applied via Karhunen–Loève expansion
(KLE). The performance of the NISFEM compared
with Monte Carlo simulation (MCS) shows that Huo
et al. achieved the better accuracy [17]. Andres and
Hori proposed a novel method for non-linear elasto-
plastic bodies based on SFEM, as a generalization of
the SFEM for linear elastic materials. The principle
characteristic feature of this method was the proposal
of two fictitious structures whose behaviors gave max-
imum and minimum bounds for the mean of variables.
The bounding structures are thoroughly derived from
a given material feature. The performance of methods
is evaluated by MCS. It is illustrated that this method
can estimate means and standard divisions of field vari-
ables even when the structure has a larger standard
division of the body features [18]. Stavroulakis et al.
reported the benefits of the graphical processing unit
(GPU) for addressing intrusive stochastic mechanics
problems. The computational performance of using
GPU for solving the problems illustrated an improve-
ment of SSFEM [19].

Sepahvand and Marburg proposed a non-sampling-
based SFEM for vibroacoustic analysis of fiber-
reinforced composite plates with uncertain Young’s
modulus and damping ratio. The performance evalua-
tion shows numerous effects of uncertainties in diverse
frequency ranges. The computed random transmission
loss illustrates an acceptable error rate compared to
the results obtained by MCS [20]. Appalanaidu et al.
introduced a method based on the generalization of
stochastic finite element for damage evaluation. The
SSFEM is extended where the non-Gaussian random
fields are defined by employing an optimal linear ex-
pansion scheme. MCS is used to evaluate the stress.
The performance of this method is shown with a nu-
merical example including a circular pipe [21]. Re-
searchers have always sought appropriate solutions to
this problem, one of which is SSFEM first proposed
by Ghanem and Spanos [22]. In this method, KLE is
used to discretize a random field that describes uncer-
tain parameters. While the system’s responses remain
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stochastic and are estimated by a chaotic polynomial
[13, 20, 23–25]. Since SSFEM has good accuracy and
efficiency, it is very popular among researchers and has
been used in many studies. This research has been doc-
umented in a report. Some studies have used the afore-
mentioned strategy to investigate the following topics:
wave propagation analysis, vibration analysis of fiber-
reinforced composites [20], composite plates [26–28],
random creep failure prediction [21], earth dams [29],
shells [10, 30], wooden structures [31], elastodynamic
issues in the time domain [7], and a variety of other in-
stances have all been investigated. Lacour et al. looked
into the nonlinear behavior of uncertain materials with-
out taking into account the loading system’s uncer-
tainty, and their findings were provided [32]. However,
certain loading was assumed in a wide range from stud-
ies presented for SSFEM, the research by Yazdani et
al. can be mentioned among the limited researches in
which loading is also assumed to be uncertain [13].

The following are the limitations of the state-of-the-
art:

• Computational complexity to calculate the struc-
tural responses

• Speed of accessing the structural responses

• Error rate of the structural responses

1.3. The Proposed Method

In this study, the generalization of SSFEM is utilized to
reduce the computational complexity associated with
structural responses. The key contributions of this pa-
per are summarized as follows:

1) Incorporating uncertainty in materials and loads

2) Modeling structures with nonlinear materials

3) Reducing computational complexity for calculat-
ing structural responses

4) Enhancing the speed of accessing structural re-
sponses

5) Decreasing the error rate of structural responses

6) Employing the proposed NSSFEM to analyze the
reliability of structures

The remainder of this paper is organized as follows:
Section 2 describes the materials and methods. Section
3 introduces the proposed NSSFEM. Results and dis-
cussions are presented in Section 4, followed by the
conclusion in Section 5.

2. Materials and Methods

The first step in analyzing uncertain systems is to pro-
vide system inputs. These inputs usually consist of
mechanical and geometric properties as well as system

loading. Some parameters for which uncertainty can be
considered include: Young’s modulus, Poisson’s ratio,
yield stress, the cross-sectional geometry of physical
systems, material and geometric defects of shells, load-
ing, etc. In general, uncertainty in a complete probabil-
ity space (Ω, F , P ) has been defined, including sample
space Ω, algebra σ in subsets Ω, and probability mea-
surements P . In modeling uncertainties in an engineer-
ing system, the terms random fields, random processes,
and random variables are used when the uncertainties
depend on the dimension of space, time, or are inde-
pendent of both, respectively. An appropriate method
to describe these values, which may have uncertainties
in time or space is to implement random processes and
fields whose probability distributions and correlation
structures can be defined through experimental mea-
surements. However, in many cases, there are assump-
tions about these probabilistic features due to the lack
of relevant empirical data. The two main categories
of random processes and fields can be defined based
on their probability distributions: Gaussian and non-
Gaussian. [13, 15, 16, 33–35].

2.1. Random Variables

One way to show uncertainty is to consider the pa-
rameters as random variables. Where the variable X,
whose value is independent of time and place, is a func-
tion for mapping the sample space Ω in a range of real
numbers R(X : Ω → R). Fig. 1 schematically shows
the performance of a random variable.

Fig. 1. Schematic performance of a random variable.

The probability of occurrence of a random variable
X in the closed interval [a, b] can be calculated by Eq.
(1):

P (a ≤ X ≤ b) =
∫ b

a

fx(x) dx (1)

Where fx(x) is a probability density function
(PDF).
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2.2. Random Field

To address uncertainty in systems, the inputs must
first be computed as a random field using a mathe-
matical model capable of expressing a large number
of phenomena oscillating in the form of a variable or
continuous variables with an unexpected pattern of be-
havior. If the inputs are treated as a random field,
a system of equations with stochastic partial deriva-
tives will dominate, with uncertain and stochastic so-
lutions. KLE and chaotic polynomial expansion (PCE)
methods, which are described below, are used to model
the random input parameters and system random so-
lutions, respectively.

2.3. Discretization of Random Gaussian Input
Fields Using KLE

Despite the fact that most random values in engineer-
ing systems are non-Gaussian, the assumption of a pos-
sible Gaussian distribution is often used because of the
simplicity and lack of relevant experimental data. A
wide range of methods developed to simulate Gaussian
random processes and fields were used in this study
using the KLE method. KLE can be considered as a
special case of orthogonal series expansion in which or-
thogonal functions are selected as special functions of
the second type of Fredholm integral Eq. and auto co-
variance function as the kernel [2, 13, 20, 22, 36, 37].
Suppose that f(x, θ) represents a random field in the
DR domain with a function defined as (f : D×Ω→ R)
in a perfect probability space (Ω,F , P ) for x ∈ D and
θ ∈ Ω where the mean values of f(x, θ) are:

µf(x) =

∫ b

a

f(x, θ) dθ (2)

And for the covariance function x1, x2 ∈ D we will
have:

C(x1, x2)=⟨f(x1, θ)−µf (x1)⟩⟨f(x2, θ)−µf (x2)⟩ (3)

Now if µf(x) and σf(x)represent the mean and stan-
dard deviation of the random field, respectively, the
expansion of KLE will be:

f(x, θ)=µf(x)+σf(x)

N∑
n=1

√
λnϕn(x)ξn(θ) (4)

Where µf(x) denotes the mean of the field, λn and
ϕn(x) represent the eigenvalues and eigenfunctions of
covariance C(x1, x2), respectively, n is a set of non-
correlated variables, and N represents the number of
KLE expansion terms. Also, ξn(θ) is a set of non-
correlated random variables with zero mean and unit
variance. The eigenvalues and eigenvectors are ob-
tained using the Fredholm quadratic integral equation

as follows:∫
D

C(x1, x2)ϕn(x1) dx1=λnϕn(x2) (5)

2.4. Representation of the Solutions By PCE

Random processes and fields are represented by poly-
nomial chaos (PC), which are created by expanding a
series of orthogonal polynomials via a sequence of ran-
dom variables with definite coefficients [13, 15, 16, 23,
38]. Norbert Wiener presented the PC notion based
on the homogeneous PC theory for Gaussian random
variables as follows:

U(θ)=a0Γ0

+
∞∑

i1=1

ai1Γ1(ξi1(θ))

+

∞∑
i1=1

i1∑
i2=1

ai1i2Γ2(ξi1(θ), ξi2(θ))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

a

i1i2i3

Γ3(ξi1(θ), ξi2(θ), ξi3(θ))

+ . . . (6)

Where, a0, ai1 , ai1i2 , . . . are the constant coeffi-
cients, and ΓP is the p-th PC degree of the standard
Gaussian random variable obtained as follows:

ΓP (ξ)=(−1)P ∂P

∂ξi1 . . .∂ξiP
e−

1
2 ξ

T ξ (7)

Now if we want to rewrite Eq. (6) as follows, there
is:

U(θ) = u0ψ0(ξ(θ))+u1ψ1(ξ(θ))+u2ψ2(ξ(θ)) + . . .

=
∞∑
i=0

uiψi(ξ(θ))
(8)

Where uj and ψj correspond to a0, ai1 , ai1i2 , . . . and
ΓP , respectively. Given that the PCE is orthogonal, it
meets the following conditions:

ψ0(θ)= 1,⟨ψj(θ)⟩= 0,⟨ψj(θ)ψk(θ)⟩ = ⟨ψ2
j (θ)⟩δjk

where δjk is the kronecker delta.

3. Formulation of a SFEM

The expanded random field is used to formulate the
stochastic matrix of each finite element (e). For a spe-
cial case where the modulus of elasticity is defined as
a random spatial variable in a homogeneous random
field f(x, y, z), we will have an element to calculate
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the stiffness of the element: [13–16]∫
V (e)

B(e)TD
(e)
0 B(e) dV (e)

+

∫
V (e)

B(e)TD
(e)
0 B(e)f (e)(x, y, z) dV

(e)

k(e)=k
(e)
0 +∆k(e)

(9)

Where k
(e)
0 and ∆k(e)are the mean stiffness and

stochastic parts of the stochastic stiffness matrix, re-
spectively. B(e) represents the strain-displacement ma-

trix, D
(e)
0 is the mean value of the stress-strain matrix,

and V (e) denotes the volume of the element. The gen-
eral stochastic matrix is formed as follows:

K=

Ne∑
i=1

ke=K0+∆K (10)

Where Ne is the number of finite elements in the
problem. Finally, the analysis of stochastic finite ele-
ments is obtained by algebraically solving the following
equation:

P = (K0+∆K)u (11)

Where P and u are node loading and displacement
vectors, respectively. Assuming that the modulus of
elasticity of the materials (E) used is a Gaussian spatial
random variable with a mean of µE(x) and standard
deviation of σE(x), using KLE, it can be represented
as follows:

E(x, θ)=µE(x)+σE(x)

∞∑
i=1

√
λiϕi(x)ξi(θ) (12)

The stochastic stiffness matrix of a finite element is
as follows:

k
(e)
i (θ) =k

(e)
0 +

∞∑
i=1

k
(e)
i ξi(θ) (13)

In the above formulas, the symbols have already
been defined.

k
(e)
i =

√
λi

∫
Ω

ϕi(x)B
TD0B dΩ (14)

Assuming that the load is certain, the equilibrium
equation of the finite elements will be as follows:[

k
(e)
0 +

∞∑
i=1

k
(e)
i ξi(θ)

]
U(θ)=F (15)

The final equation of equilibrium will be:( ∞∑
i=0

Kiξi(θ)

)( ∞∑
i=0

Uiψi(θ)

)
−F=0 (16)

Finally, a limited number of terms of both expan-
sions are retained. The term M in KLE and the term
p in PCE lead to the residue of ∈M,P , which in the
concept of mean squares must be minimized in order
to obtain the optimal approximation of the exact solu-
tion U(θ) by polynomial ψj(θ):

E[∈M,Pψk]=0, k=0, 1, 2. . . .., P−1 (17)

After several algebraic operations in a system with

N degrees of freedom with P= (M+p)!
M !p! , the linear sys-

tem of equations with dimensions (N × P ) ∗ (N × P )
is obtained:

K00 K01

K10 K11
· · ·

K0,P−2 K0,P−1

K1,P−2 K1,P−1

...
. . .

...
KP−2,0 KP−2,1

KP−1,0 KP−1,1
· · ·

KP−2,P−2 KP−2,P−1

KP−1,P−2 KP−1,P−1




U0

U1

...
UP−2

UP−1

 =


F0

F1

...
FP−2

FP−1

 (18)

4. Numerical implementation of incre-
mental elastoplastic relationships

Based on the history of plastic deformations, the incre-
mental solution is derived from the connection between
a tiny stress increment and a little strain increment
corresponding to the stress state.[39-43] In this part,
first, the mechanics of the dissolving process is defined
before rewriting the incremental relationships for an
elastoplastic material in the form of a matrix. In the
matrix form, the stress increment dσ(x, θ) can be ex-
pressed by the elastic strain increment term dϵe(x, θ)

or the general strain increment, dϵ(x, θ) as follows:

{dσ(x, θ)} = [C(x, θ)]{dϵe(x, θ)}
= [C(x, θ)]({dϵ(x, θ)}−{dϵP (x, θ)}) (19)

{dσ(x, θ)} = [Cep(x, θ)]{dϵ(x, θ)} (20)

The increment of plastic strain {dϵP (x, θ)} is ex-
pressed using a dependent rule as follows:

{dϵP (x, θ)}=dλ ∂f

∂{σ(x, θ)}
(21)

Where ∂f
∂{σ(x,θ)} is a gradient vector of the yield
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function f(σij(x,θ); k(x,θ)). The scalar function dλ is
expressed as Eq. (22):

dλ=
L

h
(22)

Where L is the function of the loading criterion de-
fined in Eq. (23):

L=

{
∂f

∂{σ(x, θ)}

}T

[C(x, θ)]{ dϵ(x, θ)} (23)

The scalar function h is defined in Eq. (24):

h=

{
∂f

∂{σ(x, θ)}

}T

[C(x, θ)]

{
∂f

∂{σ(x, θ)}

}
+A

′
(24)

Where A
′
is:

A
′
= −dk(x, θ)

d∈
C

√{
∂f

∂{σ(x, θ)}

}T {
∂f

∂{σ(x, θ)}

}
∂f

∂k(x, θ)
(25)

Where:

k(x, θ) =
σyv(x, θ)+Ep(x, θ)(ϵ(x, θ)−ϵe(x, θ))√

3

→ dk(x, θ)

d∈

=
Ep(x, θ)√

3
(26-a)

C =

√
2

3
(26-b)

∂f

∂k(x, θ)
= −2k(x, θ) = − 2√

3
σyv(x, θ) (26-c)

And for a material with a hardening model, we will
have bilinear:

Ep(x, θ) =
E(x, θ)ET (x, θ)

E(x, θ)−ET (x, θ)
(27)

Finally, the elastoplastic hardness matrix [Cep(x,θ)]
is:

[Cep(x, θ)] = [C(x, θ)]

−
[C(x, θ)]

{
∂f

∂{σ(x,θ)}

}{
∂f

∂{σ(x,θ)}

}T

[C(x, θ)]{
∂f

∂{σ(x,θ)}

}T

[C(x, θ)]
{

∂f
∂{σ(x,θ)}

}
+A′

(28)

For the plane stress state, when the von Mises yield

criterion is used,
{

∂f
∂{σ(x,θ)}

}
is obtained as follows:

{
∂f

∂{σ(x, θ)}

}
=


2σ11(x,θ)−σ22(x,θ)

3
2σ22(x,θ)−σ11(x,θ)

3
2σ12(x, θ)

 (29)

Stress calculations will be performed for all Gaus-
sian points. In the following, the calculations will be
considered for only one Gaussian point. In step (m+1),
the stresses m{(x,θ)σ} and the strains m{ϵ(x,θ)} in
step m are specified, and the hardening parameters
(mk(x,θ) and m

p(x,θ)) are also calculated at the end
of the step m. For a typical iteration step, i-th ap-

proximate displacement m+1{U}(i) is obtained from
the (m + 1)-th increment of the load. The strain and
strain increment corresponding to this displacement at
the Gaussian point will be as follows:

m+1{ϵ}(i) = [B]
m+1{U}(i) (30)

{∆ϵ(x, θ)} = m+1{(x, θ)ϵ}(i)−m{ϵ(x, θ)} (31)

First, assuming that the behavior of materials dur-
ing the strain increment calculated in Eq. (31) remains
in the elastic range, the elastic stress increment equiv-
alent to this strain increment is calculated as follows:

{∆σe(x, θ)}= [C(x, θ)] {∆ϵ(x, θ)} (32)

Assuming that at the end of the m-th incre-
ment, the stress state at the Gaussian point satisfies
the elastic state conditions f(m{σ(x,θ)};mk(x,θ)) < 0
and in the increment (m+ 1) enters an elastoplas-
tic state f(m{σ}+ {∆σe};mk) > 0. Therefore, there
is a scaling factor (Fig. 2) “r” for which it will
be: f(m{σ(x,θ)}+ r{∆σe(x,θ)};mk(x,θ)) = 0. Then,
the strain will be divided into two parts r{∆ϵ(x,θ)}
and(1 − r){∆ϵ(x, θ)}. The first part deals with the
fully elastic response of materials, while the second
part is related to the response of elastoplastic mate-
rials. Therefore, the stress increment can be obtained
from the following integral as follows:

{∆σ(x, θ)} =
∫ m+1{ϵ(x,θ)}(i)

m{ϵ(x,θ)}
[C(x, θ)]({dϵ(x, θ)}

− {dϵP (x, θ)})

=

∫ m{(x,θ)ϵ}+r{∆ϵ(x,θ)}

m{ϵ(x,θ)}
[C(x, θ)]{dϵ(x, θ)}

+

∫ m{(x,θ)ϵ}+{∆ϵ(x,θ)}

m{ϵ(x,θ)}+r{∆ϵ(x,θ)}
[C(x, θ)]

({dϵ(x, θ)} − {dϵP (x, θ) })
= r{∆σe(x, θ)}

+

∫ m{ϵ(x,θ)}+{∆ϵ(x,θ)}

m{ϵ(x,θ)}+r{∆ϵ(x,θ)}
[C(x, θ)]

({dϵ(x, θ)} − {dϵP (x, θ)}) (33)

{∆σ(x, θ)} = r{∆σe(x, θ)}

+

∫ m{ϵ(x,θ)}+{∆ϵ(x,θ)}

m{ϵ(x,θ)}+r{∆ϵ(x,θ)}
[Cep(x, θ)]{dϵ(x, θ)}

(34)
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Finally, the stress corresponding to m+1{U}(i) will
be obtained as follows:

m+1{σ(x, θ)}(i)=m{σ(x, θ)}+{∆σ(x, θ)} (35)

4.1. Determination of the loading state

The first step in stress calculations is to determine the
loading state of a Gaussian point; in other words, to de-
termine whether the Gaussian point is in the state cor-
responding to the strain increment ({∆ϵ(x, θ)}) in the
plastic loading state, the elastic state, or in the loading
state. Only in situations when the plastic load is dom-
inating, the elastoplastic relations are applied. The
governing ties are more flexible in other circumstances.
The state of materials is analyzed in two entirely dif-
ferent scenarios for this aim. The first state corre-
sponds to the Gaussian point being in an elastic state
at the conclusion of step m, whereas the second state
relates to the Gaussian point being in an elastoplas-
tic state. If the end point of the m-th Gaussian point
is in the elastic state, f(m{σ(x, θ)};mk(x, θ)) < 0, as-
suming that it is created by applying the strain incre-
ment, the state of the Gaussian point remains in the
elastic state, and the corresponding stress increment
is calculated using Eq. (32). According to the stress
obtained based on the above hypothesis, the state of
the Gaussian point is examined. If the yield crite-
rion confirms the correctness of the initial hypothe-
sis that the position of the Gaussian point is in the
elastic state, f(m{σ(x,θ)}+ {∆σe(x,θ)};mk(x,θ)) < 0
at the end of increment (m + 1), all stress calcula-
tions at the Gaussian point can be calculated based
on elasticity relations. However, if the study of
the yield criterion indicates that the materials yield,
f(m{σ(x,θ)}+ {∆σe(x,θ)};mk(x,θ)) > 0, the calcula-
tion of scale factor “r” of the fully elastic strain must
be separated from the elastoplastic strain. Then, the
stress increment in the elastic part is calculated using
the calculated elasticity relations, and the governing
elastoplastic relationships are used for calculating the
stress increment in the elastoplastic part.

Fig. 2. Schematic representation of the scale factor r
to separate the elastic part from the elastoplastic part.

4.2. Calculation of the scale factor “r”

The scale factor “r” is shown schematically in Fig. 2.
To obtain the scale factor, Eq. (36) should be solved.
Eq. (36) can be solved both analytically and numeri-
cally. If the yield equation is expressed simply based
on the invariables, the solution can be analytically ob-
tained; otherwise it is necessary to use numerical meth-
ods to solve Eq. (36).

f(m{σ(x, θ)}+r{∆σe(x, θ)};mk(x, θ)) =0 (36)

Due to the simplicity of the equation form, the von
Mises criteria may be solved both analytically and nu-
merically. As a result, both analytical and numerical
approaches to obtaining the scale factor for the von
Mises yield criterion will be described in this section.
However, it should be noted that the iterative proce-
dure is used to determine the scale factor of numerical
techniques in general. With the isotropic hardening
model, the usual equations for the von Mises yield are:

f({σ(x, θ)}, k(x, θ)) = 1

2
{S(x, θ)}T {S(x, θ)}

− k2(ϵP (x, θ)) (37)

Where {S(x,θ)} is the vector of deviator stresses
defined as follows:

{S(x, θ)}T = {Sx(x, θ);Sy(x, θ);Sz(x, θ);Syz(x, θ);

Szx(x, θ);Sxy(x, θ)} (38)

The increment of the deviator stress is also defined
as follows:

{∆S(x, θ)}T={∆Sx(x, θ),∆Sy(x, θ),∆Sz(x, θ),

∆Syz(x, θ),∆Szx(x, θ),∆Sxy(x, θ)}
(39)

To analytically solve Eq. (36) based on deviator
stresses and the increment of deviator stresses, we have:

f(m{σ(x, θ)}+r{∆σe(x, θ)},mk(x, θ))

=
1

2
(m{S(x, θ)}+r{∆S(x, θ)})T

(m{S(x, θ)}+r{∆S(x, θ)})−mk2(ϵP (x, θ))

=0 (40)

Or:

1

2
r2{∆S(x, θ)}T {∆S(x, θ)}+rm{S(x, θ)}T {∆S(x, θ)}

+
1

2
m{S(x, θ)}Tm{S(x, θ)}−mk2(ϵP (x, θ))=0 (41)

Hence, the scale factor r is obtained by solving Eq.
(41) as follows:

1

2
r2{∆S(x, θ)}T {∆S(x, θ)}+rm{S(x, θ)}T {∆S(x, θ)}

+
1

2
m{S(x, θ)}Tm{S(x, θ)}−mk2(ϵP (x, θ))=0 (42)
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To numerically solve an iterative process until we
reach the desired error rate, the general process of this

solution will be presented in Eq. (43).

r(0)=0

r(1)=
f(m{σ(x, θ)},mk(x, θ))

f(m{σ(x, θ)},mk(x, θ))−f(m{σ(x, θ)}+{∆σe(x, θ)},mk(x, θ))

r(i+1)=r(i)− f(m{σ(x, θ)}+r(i){∆σe(x, θ)},mk(x, θ))
f(m{σ(x, θ)}+r(i−1){∆σe(x, θ)},mk(x, θ))−f(m{σ(x, θ)}+r(i){∆σe(x, θ)},mk(x, θ))

(r(i−1)−r(i))

(43)

4.3. Integration Techniques

The algorithms used to integrate Eq. (33) or (34) can
be divided into two categories: One group is based on
explicit techniques and the other group is based on
implicit techniques. For both types, to achieve the re-
quired accuracy in the integration process, the elasto-
plastic strain increment can be divided into an ap-
propriate number of n, which is called sub-increment,
{∆∈̃(x, θ)}.

{dϵ(x, θ)}={∆∈̃(x, θ)}=(1−r){∆∈(x, θ)}
n

(44)

Forward stresses are estimated from one strain sub-
increment to the next, if an explicit procedure is em-
ployed, such as the Euler forward method. The stresses
at the end of each sub-increment are computed again,
if an implicit approach is employed, such as the Euler
backward method. Hence, in this case, there are two it-
erative loops in solving nonlinear equations, one is the
iteration loop of equilibrium equations, and the other
is during the integration process to evaluate the accu-
racy of stresses. In this section, we will only discuss
some details of the explicit Euler forward method. For
each sub-increment,{∆∈̃(x,θ)}, the explicit method in-
cludes the following steps:

Step 1: Determine the plastic strain increment using
{∆ϵ̃p} with a suitable algorithm and determine the ef-
fective plastic strain increment ∆∈̃p.

{∆ϵ̃p(x, θ)}=(1−r)
n

L

h

{
∂f

∂{σ(x, θ)}

}
(45)

Step 2: Calculate the stress sub-increment {∆σ̃(x, θ)}

{∆σ̃(x, θ)} = [C(x, θ)]({∆∈̃(x, θ)}−{∆ϵ̃p(x, θ)} (46)

Step 3: Update the stress, strain and hardening pa-
rameters:

{σ(x, θ)} ← {σ(x, θ)}+{∆σ̃(x, θ)}
{∈(x, θ)} ← {ϵ(x, θ)}+{∆∈̃(x, θ)}
{∈P (x, θ)} ← {∈P (x, θ)}+{∆ϵ̃p(x, θ)}
ϵP (x, θ)←ϵP (x, θ)+∆∈̃p(x, θ), k←k(ϵP (x, θ))

(47)

4.4. Modification of the Increments to Satisfy
Compatibility Conditions

Compatibility conditions df = 0 must be met in a plas-
tic loading process. However, since many approxima-
tions are used in a numerical solution, the compati-
bility conditions are often not met. Adding a strain
sub-increment to the next load state results in:

f({σ(x, θ)};ϵP (x, θ)) ̸=0 (48)

In other words, the stress is not on the next yield
surface and moves away from the yield surface. Such
a stress deviation accumulates from the yield surface
and leads to very important errors for solving non-
linear equations. As a result, the stress vector must
be changed to meet the compatibility requirements.
Adding a correction vector in the direction of the nor-
mal yield surface vector to the stress vector is a com-
mon way to do so.

{δσ(x, θ)}=a
{

∂f

∂{σ(x, θ)}

}
a=

−f({σ(x, θ)}, k(x, θ)){
∂f

∂{σ(x,θ)}

}T {
∂f

∂{σ(x,θ)}

} (49)

Finally, the modified stress vector will be obtained:

{σ(x, θ)}←{σ(x, θ)}+{δσ(x, θ)} (50)

4.5. Formulation of the Structures with Non-
linear Materials in SSFEM:

To use SSFEM for solving uncertain structures with
nonlinear materials, first, by using the operators of this
method and selecting the appropriate number of terms
from KLE and PCEs, the input random variables and
solution are modeled. Then, the process of solving the
stiffness matrix is formed and assuming that the be-
havior of the materials is linear, the problem begins
to be solved. In each increment, before a solution sub-
increment is completed, the stress state at the Gaussian
points is checked so that if the material yielding crite-
ria are activated, the operators of the plastic condition
applications modify the stresses and, consequently, the
solutions are corrected. This process continues until
the problem is completely solved and the desirable so-
lution is achieved.
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4.6. Structural Reliability Analysis Based on
Spectral Finite Element Method

In the sense of structural reliability, the probability
of failure occurs when the load and material properties
are random variables (X), and structural failure can be
estimated using a finite state function (g(x)) defined
for the structure response. The failure probability is
then calculated using the multiple integral defined in
the failure domain Df = {g(x) ≤ 0} as follows [33]:

Pf=prob[g(x)≤0]=
∫
Df

f(x) dx (51)

Where f(x) is PDF x and prob is a measure of prob-
ability. Since Eq. (51) is difficult to solve in most engi-
neering problems, various numerical methods were pro-
posed for these problems. Since the output of stochas-
tic spectral finite elements is a structural stochastic
response vector, it could be easy to calculate the PDF
and CDF of the responses and the probability of struc-
tural failure using MCS. The probability of failure can
be approximated as follows:

Pf=
n

N
(52)

Where n is the number of samples for g(x) ≤ 0,
and Ns is the total number of samples. The reliability
index (β) in MCS is defined as follows:

β= −Φ−1(Pf ) (53)

Where Φ is the CDF of normal standard.

5. Numerical Examples

5.1. Example 1: A Square Plate

Fig. 3 shows a plate in the plane stress mode with di-
mensions of 160 * 160 * 2mm, zero material density
and Poisson’s coefficient of 0.3 under four concentrated
horizontal loads p1 in three nodes, 2,3 and 4 and three
concentrated vertical loads p2 in nodes 10,15 and 20
that, the specifications of the loads are listed in Table
1. The support is between rigid nodes 1 to 21. For anal-
ysis, loading, modulus of elasticity E (Fig. 4) and yield
stress S are considered as random fields with mean and
standard deviation σ. All three parameters are defined
based on Eq. (54) using the two-dimensional exponen-
tial function. bx and by are correlation lengths, which

are assumed to be equal to 160 in both directions, and
for a KLE with 4 terms, eigenvalues and eigenvectors
are shown in Fig. 5 and Fig. 6. In this case, the
maximum acceptable displacement is 6mm. In this ex-
ample, by changing the number of M and p, the effect
of increasing and decreasing the number of KLE terms
and the order of PCE on the accuracy of the results
are evaluated.

Fig. 3. The structure examined in example 1.

Fig. 4. Modulus of elasticity of the materials in ex-
amples 1 and 2.

Table 1
Structure input specifications of example 1.

Value Parameter Value Parameter Value Parameter Value Parameter
25 Nodes 235MPa µS 20GPa µET 20000N µp1
16 Elements 23.5MPa σS 2GPa σET 2000N σp1
40mm×40mm Mesh size 160 bx 200GPa µE 30000N µp2

160 by 20GPa σE 3000N σp2



NSSFEM: Nonlinear Spectral Stochastic Finite Element ...: 35–55 44

C(X1, X2) = exp

(
−|x1, x2|

bx
− |y1, y2|

by

)
(54)

The mean displacements and stresses and standard
deviations resulted from NSSFEM can be seen in Fig.
??. By examining the results obtained from the pro-
posed method and comparing these data with the out-
puts of the Monte Carlo method (10,000 samples were
evaluated in both examples), the accuracy of the pro-
posed solution was very favorable due to the reduction
of computation time. Figs. 7 and 8 provide a compar-
ison between the PDFs as well as the CDFs obtained
for vertical displacement at node 25 and the accuracy

based on differentMs and ps. Based on the results pre-
sented in these figures, it can be found that the effect of
increasing the M term is more than p in achieving the
desirable result. On the other hand,M has an effect on
the accuracy of the obtained values, and p has a very ef-
fective effect on the scatter of responses. The accuracy
of the findings is high, with an error rate of less than
3%. Fig. 9 shows the relationship between the mean
displacement values produced using the Monte Carlo
approach and NSSFEM. Table 2 shows the results of
the NSSFEM and MCS techniques for the chance of
failure and computation time.

Fig. 5. Eigenvalues for 4 KLE terms in 2 dimensions.

Fig. 6. Eigenvectors for 4 KLE terms in 2 dimensions.
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Fig. 7. Mean and standard deviation of displacement and stress in the structure example 1.

Fig. 8. PDF and CDF of vertical displacement at node 25 for p = 4 and variable Ms.
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Fig. 9. PDF and CDF of vertical displacement at node 25 for M = 4 and variable p.

Table 2
Probability of failure and structural analysis time of example 1.

Time (sec) β Pf Case
17362 2.2058 0.0137 MCS

1273 2.2286 0.01292 NSSFEM

Fig. 10. Correlation between mean displacement val-
ues obtained from Monte Carlo method and SSFEM
M = 4, p = 3.

5.2. Example 2: A square plate with a central
cut-out

Fig. 13 shows a square plate with a central cut-out
with three different meshings in the plane stress mode
with dimensions of 120*120*2mm. The density of ma-
terials is assumed to be zero and the Poisson’s ratio
to be 0.3. Structures under a wide vertical load q,
three concentrated horizontal loads p1, and two con-
centrated vertical loads p2, where the locations of the

loads in each mesh were shown in Table 3, and the load
specifications are presented in Table 4. The location of
the joint support for each mesh is given in Table 3.
For analysis of loading, modulus of elasticity E (Fig.
4) and yield stress S are considered as random fields
with a mean and standard deviation σ. All three pa-
rameters are defined according to Eq. (54) using the
two-dimensional exponential function. bx and by are
correlation lengths assumed to be equal to 120 in both
directions, and eigenvalues and eigenvectors for a KLE
with 4 terms are displayed in Figs. 10 and 11.

In this case, the reliability analysis is performed
using type 3 meshing, and a maximum acceptable dis-
placement of 10mm is considered.

Fig. 11. Eigenvalues for 4 KLE terms in 2 dimensions
for example 2.

Table 3
Meshing specifications and location of loads and supports in each meshing in example 2.

location of loads location of loads location of loads Mesh Number of Number of Mesh

q p2 (nodes) p1 (nodes) size nodes elements

Between nodes4-16 4,16 2, 3,4 40mm×40mm 16 9 Mesh1

Between nodes7-48 7,48 3, 5,7 20mm×20mm 48 32 Mesh2

Between nodes13-160 13,160 13, 9,5 10mm×10mm 160 128 Mesh3
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Fig. 12. Eigenvectors for 4 KLE terms in 2 dimensions for example 2.

Fig. 13. Structural meshing of example 2.

Table 4
Structural input data of example 2.

Value Parameter Value Parameter Value Parameter

100GPa µ ET 1000N µp2 200N/mm µq

10GPa ETσ 100N σp2 20N/mm qσ

235MPa µ S 200GPa µE 6 000N µp1

23.5MPa σS 20GPa Eσ 600N σp1

Three different sizes of meshing are utilized in this
example to demonstrate how to achieve the desired so-
lution and the impact of meshing dimensions. The
findings were produced for varying M and p using two

forms of meshing 1 and 2 and compared to the values
acquired using the Monte Carlo approach (Figs. 13-
20).By viewing the PDF and CDF diagrams (Figs. 13,
14-16, and 18-20) obtained for the displacements, it can
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be seen that by increasing the KL and PCE terms, the
accuracy of the results is increased to the point that
in both meshings with p=4, M=4, the mean value and
standard deviation of displacement in the nodes with
an error percentage of less than 4% correspond to the
values obtained from Monte Carlo (Figs. 16, 20, and
23). For the third meshing, only p=4, M=4 were used
in modeling the probabilistic parameters, the results of
which can be observed in Figs. 21, 22, and 23. Fig. 23

shows the correlation between the outputs of MCS and
NSSFEM, which can clearly show the resultant consis-
tency. In this example, the mean error is less than 4%.
Mean displacements and stresses and standard devia-
tions obtained from NSSFEM can be seen in Figs. 13,
17, and 21 for all three types of meshing. The values
obtained for the probability of failure as well as the du-
ration of calculations of both NSSFEM and MCS are
presented in Table 5.

Fig. 14. Mean and standard deviation of displacement and stress in the structure of example 2, meshing No.
1.



Journal of Stress Analysis/ Vol. 8, No. 1, 2023-24 49

Fig. 15. PDF and CDF of horizontal displacement at node 16 for p = 4 and variable Ms.

Fig. 16. PDF and CDF of horizontal displacement at node 16 for M = 5 and variable p.

Fig. 17. Correlation between the mean displacement values obtained for meshing 1 of example 2 of the Monte
Carlo method and the SSFEM M = 4, p = 4.
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Fig. 18. Mean and standard deviation of displacement and stress in the structure of example 2; Meshing No.
2.

Fig. 19. PDF and CDF Horizontal displacement at node 48 for p = 4 and M variables.
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Fig. 20. PDF and CDF of horizontal displacement at node 16 for M = 5 and variable p.

Fig. 21. Correlation between the mean displacement values obtained for meshing 3 of example 2 for the Monte
Carlo method and the SSFEM M = 4, p = 4.

Table 5
Probability of failure and structural analysis time of example 2.

Time (sec) β Pf Case

1375265 3.2835 0.0112 MCS

115421 3.2476 0.0123 NSSFEM

6. Conclusions

Factoring in uncertainty in the structure’s input pa-
rameters complicates the problem, particularly because
nonlinear analysis is both time-consuming and com-
putationally intensive. To address this, we introduced
the nonlinear spectral stochastic finite element method
(NSSFEM), which generalizes the SSFEM for nonlin-
ear problems. The proposed NSSFEM incorporates un-
certainties in both materials and loads, making it ap-
plicable to structures modeled with elastoplastic ma-
terials. Our modeling results demonstrate that us-
ing NSSFEM, as opposed to Monte Carlo Simulation
(MCS), significantly reduces the computation time re-
quired to obtain structural responses. Additionally,

NSSFEM achieves an error rate of less than 3% in these
responses. The proposed NSSFEM was also utilized
to analyze the reliability of structures. The values of
the Karhunen-Loève expansion (KLE) and polynomial
chaos expansion (PCE) terms were optimized. The
findings indicate that increasing the number of KLE
terms (M) has a greater impact on accuracy than in-
creasing the order of PCE (p). Moreover, both increas-
ing and decreasing KLE terms are more effective in
enhancing the result accuracy. This study shows that
larger structures require fewer KLE and PCE terms to
achieve the desired level of accuracy. Overall, the re-
sults from NSSFEM demonstrate 97% accuracy while
significantly reducing the computation time.
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Fig. 22. Mean and standard deviation of displacement and stress in the structure of example 2; meshing No.
3.

Fig. 23. PDF and CDF of horizontal displacement at Node 160.
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Fig. 24. Correlation between the mean displacement values obtained for meshing 3 of example 2 for the Monte
Carlo method and the SSFEM M = 4, p = 4.
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[31] J. Füssl, G. Kandler, J. Eberhardsteiner, “Appli-
cation of stochastic finite element approaches to
wood-based products,” Arch. Appl. Mech., 86(1-
2)(2016) 89-110, doi: 10.1007/s00419-015-1112-6.

[32] M. Lacour, J. Macedo, and N. A. Abrahamson,
“Stochastic finite element method for non-linear
material models,” Comput. Geotech., 125 (2020),
doi: 10.1016/j.compgeo.2020.103641.

[33] C.K. Nowak AS, Reliability of structures. CRC
Press, (2013).



Journal of Stress Analysis/ Vol. 8, No. 1, 2023-24 55

[34] B. Sudret, A. Der Kiureghian, Stochastic Finite
Element Methods and Reliability, no. October.
(2000).

[35] C.H. Ma, J. Yang, L. Cheng, L. Ran, “Research
on slope reliability analysis using multi-kernel rel-
evance vector machine and advanced first-order
second-moment method,” Eng. Comput., (2021),
doi: 10.1007/s00366-021-01331-9.

[36] R. Ghanem, G. Saad, A. Doostan, “Effi-
cient solution of stochastic systems: Appli-
cation to the embankment dam problem,”
Struct. Saf., 29(3) (2007) 238–251, doi:
10.1016/j.strusafe.2006.07.015.

[37] P. Zakian, N. Khaji, A. Kaveh, “Graph
theoretical methods for efficient stochas-
tic finite element analysis of structures,”
Comput. Struct., 178 (2017) 29-46, doi:
10.1016/j.compstruc.2016.10.009.

[38] S.E. Pryse, S. Adhikari, “Neumann enriched poly-
nomial chaos approach for stochastic finite el-
ement problems,” Probabilistic Eng. Mech., 66
(2021), doi: 10.1016/j.probengmech.2021.103157.

[39] W.F. Chen, D.J. Han, Plasticity for Structural
Engineers. Springer, (1988). doi: 10.1007/978-1-
4612-3864-5.

[40] R. De Borst, M.A. Crisfield, J.J. Remmers,
C.V. Verhoosel, Non-Linear Finite Element Anal-
ysis of Solids and Structures: Second Edi-
tion. JOHN WILEY & SONS, (2012). doi:
10.1002/9781118375938.

[41] K.J. Bathe, Finite Element Procedures.
Prentice-Hall, (2005). [Online]. Available:
http://books.google.com/books?id=wKRRAAAA
MAAJ&pgis=1%5 Cn-
ftp://ftp.demec.ufpr.br/disciplinas/EME748/
Textos/Bathe, K.-J. - Finite Element Procedures
- 1996 - Prentice-Hall - ISBN 0133014584 -
1052s.pdf

[42] J. Huang, D.V. Griffiths, “Return mapping
algorithms and stress predictors for failure
analysis in geomechanics,” J. Eng. Mech.,
135(4) (2009) 276-284, doi: 10.1061/(asce)0733-
9399(2009)135:4(276).

[43] S. Im, J. Lee, M. Cho, “Surrogate modeling of
elasto-plastic problems via long short-term mem-
ory neural networks and proper orthogonal decom-
position,” Comput. Methods Appl. Mech. Eng.,
385 (2021), doi: 10.1016/j.cma.2021.114030.


	NSSFEM: Nonlinear Spectral Stochastic Finite Element Method for Analysis of Structures with Elastoplastic Material  Hosseinali Rahimibondarabadi, Seyed Sajad Mousaviamjad
	4-Hosseinali-Rahimibondarabadi.pdf
	Introduction
	Stochastic Approach in Analysis of Structures
	Related Works
	The Proposed Method

	Materials and Methods
	Random Variables
	Random Field
	Discretization of Random Gaussian Input Fields Using KLE
	Representation of the Solutions By PCE

	Formulation of a SFEM
	Numerical implementation of incremental elastoplastic relationships
	Determination of the loading state
	Calculation of the scale factor ``r''
	Integration Techniques
	Modification of the Increments to Satisfy Compatibility Conditions
	Formulation of the Structures with Nonlinear Materials in SSFEM:
	Structural Reliability Analysis Based on Spectral Finite Element Method

	Numerical Examples
	Example 1: A Square Plate
	Example 2: A square plate with a central cut-out

	Conclusions




