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Abstract

In this paper, the thermo-mechanical buckling analysis of a non-homogeneous
open cylindrical shell reinforced with single-walled carbon nanotubes with a
uniform/non-uniform distribution on an elastic foundation under thermal and
mechanical loads has been addressed. Using the minimum energy principle,
the governing differential equations of this system are derived and in order
to determine the properties of the reinforced composite shell, the modified
mixtures law has been used. It is assumed that the properties of single-walled
carbon nanotubes are acquired from molecular dynamics simulation. It is
also assumed that the material properties of the reinforced carbon nanotube
composites are linear in the thickness and are defined based on mixture law
via a micro-mechanical model in which the nanotube performance parameter
is considered. After solving these equations, the effects of geometric charac-
teristics of the shell and material properties on the critical load and critical
temperature of shell buckling are investigated.

Nomenclature

wCNT Mass fraction of carbon nanotubes µ′ Variation coefficient
ρCNT Density of carbon nanotubes vm Poisson’s ratio of matrix media
ρm Density of matrix media vCNT

12 Poisson’s ratio of carbon nanotubes
VCNT Volune fraction of carbon nanotubes u, v, w Displacements of cylindrical shell
Vm Volume fraction of matrix media εθ, εx Normal strains
a Radius of the middle plane γxθ, γxz, γθz Shear strains
ECNT

11 Young’s modulus of carbon nanotubes τθz, τxz, τxθ Shear stresses
ECNT

22 Young’s modulus of carbon nanotubes h Thickness of cylindrical shell
αCNT
11 Coefficient of thermal expansion of car-

bon nanotubes
αCNT
22 Coefficient of thermal expansion of car-

bon nanotubes
L Length of cylindrical shell θ Opening angle of cylindrical shell
GCNT

12 Shear modulus of carbon nanotubes σx, σθ Normal stresses
Em Young’s modulus of matrix E0 Elasticity modulus of homogeneous shell
Gm Shear modulus of matrix Qij Stiffness matrix components
αm Matrix coefficient of thermal expansion Ni, Mi, Pi Normal stress resultants
ηj Coefficient of productivity Qi, Ri Shear stress resultants
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Kw Winkler coefficient U Strain energy
Kg Pasternak coefficient V Total potential energy
UT Energy caused by thermal strain Ω Work of external forces
Uf Energy caused by the elastic foundation

1. Introduction

A group of materials called carbon nanotubes has re-
cently attracted particular attention. Via counduc-
tion of specific experiments and simulations; it is un-
derstood that these nanotubes have better mechani-
cal properties than carbon fibers [1]. Since the me-
chanical attributes of composites depend on the behav-
ior of fibers inside them, the former carbon fibers can
be replaced with carbon nanotubes. This process can
improve the properties of composites, such as tensile
strength and elastic modulus.

Most research on carbon nanotube-reinforced com-
posites has focused on material properties. Various
studies have shown that adding a small percentage of
nanotubes to a matrix significantly increases the elec-
trical, mechanical, and thermal properties of compos-
ites [2–6]. Kordani et al. [7] showed that the stiffness of
carbon nanotube-reinforced composite beams could be
improved by uniform diffusion of a small percentage
of nanotubes. Vodenitcharova and Zhang [8] studied
the bending of reinforced carbon nanotube composite
beams. Formica et al. [9] studied the behavior of vi-
bration in the reinforced carbon nanotube composite
plates by expending an equivalent continuous model
according to the Mori Tanaka method.

Experiments and studies on carbon nanotube-
reinforced composite have shown that the uniform dis-
tribution of nanotubes as reinforcements in the matrix
causes a moderate improvement in mechanical prop-
erties [10, 11]. Another type of nanotube distribution
in carbon nanotube-reinforced composites is the non-
homogeneous distribution of carbon nanotubes with a
specific slope to improve the composite’s buckling be-
havior. Shen [12] found that the non-linear bending
behavior can be improved by the functional gradient
(FG) distribution of carbon nanotubes in the matrix.
Shen and Zhu [13] also investigated the effect of carbon
nanotubes on the post-buckling and heat post-buckling
behavior of functionally graded nanotube-reinforced
composite plates. Ke et al. [14] studied the vibra-
tions of reinforced Timoshenko FG-beams with carbon
nanotubes. It was established that for the linear/non-
linear frequencies of the FG repartition, carbon nan-
otubes were higher than the uniform distribution (UD)
or asymmetric distribution state of the nanotubes.
Raufi et al. [15] studied the vibrations of an FG two-
dimensional perforated sector plate with the elastic
foundation. It was established that the power law’s
constants and the elastic basis have important effects
on the frequencies of the system. Moreover, in struc-
tures made of 2D functionally gradient materials, us-

ing more parameters, the vibrational of the system can
be controlled compared to one-dimensional function-
ally gradient materials. Mohammadimehr et al. [16]
studied the effect of heat on deflection, buckling load
of Euler-Bernoulli beam vibrations on the Pasternak
foundation using the Ritz method. It was established
that with increasing Winkler-type spring constant and
Pasternak shear constant, the amount of deflection in
the beam decreases, and the natural frequency and crit-
ical load increase. With increasing temperature, the
deflection rate increases, and the critical buckling load
and natural frequency decrease.

Pourasghar et al. conducted the three-dimensional
analysis of cylindrical shells with temperature-
dependent properties reinforced with carbon nan-
otubes which were subjected to ambient temperature.
Using the generalized differential quadrature method
solution method, they obtained an accurate solution for
thermoelastic analysis of cylindrical shells reinforced
with carbon nanotubes [17]. Ghorbanpour Arani et
al. investigated the buckling of the piezoelectric cylin-
drical shell reinforced with DWBNNT nanotubes un-
der electro-thermomechanical load. This study has
shown that the use of reverse voltage or decreasing
the temperature increases the critical load. further-
more, piezoelectricity generally increases the buckling
resistance of the composite cylindrical shell [18]. Using
the HDQM method, Mosalaei Barzoki et al. investi-
gated the non-linear buckling response of the piezo-
electric cylindrical shell reinforced with BNNT mate-
rials electro-thermomechanical load. The results show
that in comparison with other non-intelligent materials
such as CNTs, the presence of piezoelectricity increases
the critical load in composites [19].

Mohammadi et al. conducted a thermoelastic anal-
ysis of FG pressure vessels reinforced with carbon nan-
otubes based on different Pasternak foundation pat-
terns. The governing relations have been achieved
by utilizing the principle of virtual work under fixed
boundary conditions. Therefore, the various parame-
ters effect similar to the volume fraction of nanotubes
and Pasternak coefficients and the type of arrangement
pattern of nanotubes have been explored [21]. Addi-
tionally, Arefi et al. did a two-dimensional thermoe-
lastic analysis of FG pressure vessel reinforced with
carbon nanotubes using first-order shear deformation
theory [22]. Arefi et al. analyzed the passive vibra-
tions of FG sandwich reinforced beams with carbon
nanotubes in the magnetic and thermal environment
using non-local strain gradient theory and various the-
ories of shear deformation [23]. They conducted a
non-local bending analysis of a curved nano-beam re-
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inforced with graphene nanoplatelets according to the
first-order shear deformation theory (FSDT). The re-
sults displayed that the number of graphene layers
has a special effect on displacements and stresses [24].
Furthermore, Arefi et al. studied the size-dependent
free vibrations of a graphene-reinforced polymer com-
posite beam located on a Pasternak foundation. In
this paper, FSDT is utilized, and the law of mix-
tures and Halpin-Tsai model are applied to analyze
the mechanical attributes of the composite. This study
shows that increasing the stiffness ratio with graphene
nanoplatelets to its length increases the natural fre-
quency [25]. Arefi et al. studied the free vibrations
of a graphene-reinforced polymer nanoplate based on
two-variable shear deformation theory and a non-linear
elastic theory, which was also considered transversely
as the sum of the variables of bending and shear de-
formation. Obtained numerical results displayed that
according to the higher flexural strength of composite
materials, the FG-X pattern for such graphenes had
the maximum natural frequency [26].

Tadi Beni et al. [27] analyzed the free vibrations
of simply supported functionally graded cylindrical
nanoshells, using the modified couple stress theory in
conjunction with the first order shear deformation shell
model. General equations of motion were solved by the
Navier procedure for the special case of simply sup-
ported functionally graded cylindrical nanoshells [27].
Mehralian and Tadi Beni [28] investigated the size de-
pendent torsional buckling behavior of cylindrical shell
made of through-the-thickness functionally graded ma-
terials, and the modified couple stress shell theory with
the von Karman geometrical nonlinearity was utilized
to derive the governing equations and boundary condi-
tions based on the minimum potential energy principle.
As a special case, the torsional buckling of simply sup-
ported and clamped FG cylindrical shells was examined
using the GDQ method.

Mehralian et al. [29] developed the size-dependent
formulation of shear deformable Functionally Graded
Piezoelectric (FGP) cylindrical nanoshells based on a
new modified couple stress theory to study the buckling
of simply supported FGP cylindrical nanoshells under
uniform lateral external pressure. Zeighampour and
Tadi Beni [30] studied the wave propagation in func-
tionally graded carbon nanotube reinforced composite
(FG CNTRC) cylindrical microshell by taking into con-
sideration nonlocal constant and material length scale
parameter. Shear deformable shell theory as well as
nonlocal strain gradient theory and Hamilton’s princi-
ple were used to drive classical governing equations of
the FG CNTRC cylindrical microshell and UD and FG-
X Carbon nanotubes distributions were investigated.

Mohammad Dashtaki and Tadi Beni [31] investi-
gated the thermal and size effects on the buckling be-
havior of a nanobeam symmetrically located between
two electrodes, subjected to the influence of the nonlin-

ear external forces including electrostatic and Casimir
attractions.

Song et al. [32] investigated the wave dispersion
characteristics of graphene reinforced nanocomposite
curved viscoelastic panels. The second-order shear de-
formation theory in curvilinear coordinate was used to
develop the doubly-curved shell as a continuous struc-
ture and the general nonlocal strain gradient theory
was adopted to calculate nonlocality and strain gradi-
ent size-dependency. Khorasani et al. [33] studied the
vibration analysis of graphene nanoplatelets reinforced
composite plates integrated by piezo-electromagnetic
patches on the piezo-electromagnetic media by sinu-
soidal shear deformation plate theory.

Karimi Zeverdejani et al. [34] presented the buck-
ling and post-buckling of graphene-reinforced lami-
nated composite plates subjected to uniaxial and bi-
axial loadings. Governing Equations of motion of the
plate were modeled using the first shear deformation
theory and for large deformation, von Karman nonlin-
earity was considered. Mechanical properties of each
layer were evaluated using the molecular dynamics sim-
ulation [34]. Karimi Zeverdejani and Tadi Beni [35]
investigated the effect of laminate configuration on the
free vibration/buckling of FG Graphene/PMMA com-
posites. Buckling and free vibration of rectangular
polymeric laminate reinforced by graphene sheets were
investigated by considering various patterns for aug-
mentation of each laminate.

Bagherizadeh et al. [36] studied the mechanical
buckling of functionally graded material cylindrical
shell that was embedded in an outer elastic medium
and subjected to combined axial and radial compres-
sive loads based on Higher-order Shear Deformation
Shell Theory (HSDT) considering the transverse shear
strains. Babaei and Eslami [37] investigated the nonlin-
ear static bending behavior of infinite length cylindri-
cal panels made of Functionally Graded Porous (FGP)
materials with clamped edges and subjected to uni-
form temperature rise and transverse pressure loading.
Nosier and Ruhi [38] presented a semi-analytical so-
lution for three dimensional elastic analysis of finitely
long, simply supported, orthotropic, laminated cylin-
drical panels with piezoelectric layers subjected to
outer pressure and electrostatic excitation.

Because of the wide need for shell structures
with high thermal and mechanical reinforcement in
aerospace industries, this study focuses on the thermo-
mechanical buckling of composite carbon nanotubes
reinforced cylindrical shells under axial pressure and
temperature. The main problem here is calculating
the load and buckling temperature for reinforced com-
posite cylindrical shells with carbon nanotubes under
different volume fractions of the nanotubes. It is sup-
posed that the properties of single-walled carbon nan-
otubes (SWCNs) depend on temperature and size ef-
fect from MD simulations. It is also supposed that
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the properties of the reinforced composites with carbon
nanotubes are graded in the thickness direction and
are defined by the law of mixtures. Stability equations
are also obtained from the neighborhood method of
adjacent points by making a rise in displacement com-
ponents. The obtained equations are explained using
the wave method, and the various parameters affect-
ing the thermo-mechanical buckling are investigated.
The novelty of the present reseach is to investigate the
non-homogeneity effect of mechanical properties by us-
ing the third order shear deformation theory and also
the effect of elastic substrate and different nano tubes
distributions on the thermo-mechanical buckling pa-
rameters of a cylindrical panel.

2. Mechanical Properties of Reinforced
Composite with Carbon Nanotubes

Based on the previous research on the properties of
nanocomposites among various mechanical models, the
Mori Tanaka model has been very accurate. On the
other hand, the modified rule of mixtures due to sim-
plicity and convenience and excellent compliance with
the Mori Tanaka model has been the most used in re-
cent research in nanocomposites. Therefore, as men-
tioned earlier, in the present research, the modified rule
of mixtures has been used to determine the properties
of reinforced nanocomposites. By showing the proper-
ties of the matrix with index m and the properties of
reinforcing particles with index f , the related equations
to the volume fraction are as follows [20]:

VCNT = w (z)V ∗
CNT

V ∗
CNT =

wCNT

wCNT + ρCNT

ρm
− ρCNT

ρm
(wCNT )

VCNT + Vm = 1

(1)

where wCNT , ρCNT , ρm, VCNT , and Vm are mass frac-
tion of carbon nanotubes, density of carbon nanotubes,
density of matrix media, volune fraction of carbon nan-
otubes, and volume fraction of matrix media, respec-
tively. According to the conducted research, there are
different distributions of carbon nanotubes in the ma-
trix body, volume fraction of the various distributions
are given in the following equations [26].

VCNT (z) = V ∗
CNT (UD − CNTRC) (2)

VCNT (z) =

(
1 +

2Z

h

)
V ∗
CNT (FG− V CNTRC)

(3)

VCNT (z) = 2

(
1 − 2 |Z|

h

)
V ∗
CNT (FG−O CNTRC)

(4)

VCNT (z) = 2

(
2 |Z|
h

)
V ∗
CNT (FG−X CNTRC)

(5)

Fig. 1. Schematic of the carbon nanotubes distribu-
tion.

According to the rule of mixtures, the following
equations are proposed for the modulus of longitudi-
nal and shear elasticity [20, 39]:

Em = E0

(
1 + µ′ z

h

)

E11 = η1VCNE
CNT
11 + VmE

m

η3
E22

=
VCNT

ECNT
22

+
Vm
Em

η3
G12

=
VCNT

GCNT
12

+
Vm
Gm

Gm =
Em

2(1 + υm)

α11 = VCNTα
CNT
11 + Vmα

m

α22 =
(
1 + υCNT

12

)
VCNα

CNT
22 + (1 + υm)Vmα

m

− υ12α
11

(6)

where E0 is the modulus of the elasticity of the
homogeneous shell, ECNT

11 and ECNT
22 is Young’s mod-

ulus and αCNT
11 and αCNT

22 is the coefficient of thermal
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expansion and GCNT
12 is the shear modulus of carbon

nanotubes. Em and Gm and αm are also properties
related to the matrix. ηj is called the coefficient of
productivity or efficiency of the nanotube calculated
by merging the elastic modulus of the composite rein-
forced with the carbon nanotube from the molecular
dynamics method with the numerical results obtained
from the rule of mixtures. µ′ is the variation coeffi-
cient that varies from zero to one. Poisson’s ratio, υ12,
is slightly dependent on temperature and position as
follows:

v12 = V ∗
CNT v

CNT
12 + Vmv

m (7)

3. Modeling the Problem and Its Gov-
erning Equations

Based on Fig. 2, the shell of open cylinders is consid-
ered with the radius of the middle plate a, the thick-
ness h, and the length L; the coordinate system (x, θ, z)
where x is considered in the direction of the axis of the
shell, θ in the tangential direction, and z in the vertical
direction on the middle surface.

Fig. 2. The geometry of the cylindrical panel and the
coordinate system intended for it.

Strain-displacement relations based on Donnel non-
linear theory are [40]:

εx = u0,x +
1

2
w2

,x,

εθ =
v0,θ + w

a
+

1

2

(
+w,θ

a

)2

,

γxθ =
u0,θ
a

+ v0,x +
w,xw,θ

a
,

γxz = u1 + w,x , γθz = v1 +
w,θ

a
− v0

a

(8)

εθ, εx are vertical strains and γxθ, γxz and γθz are shear
strains, and comma strains represent partial deriva-
tives. Furthermore, u, v, and w are the displacement
of the cylindrical shell in the directions x, θ, and z,
respectively.

There are various theories to study the kinematics
of beam deformation. One of the most widely used

is the Euler-Bernoulli classical beam theory. In this
theory, the straight line perpendicular to the neutral
axis of the beam remains straight and perpendicular
to the neutral axis after the deformation of the beam.
In other words, this theory ignores the effects of trans-
verse shear strains, which are valid for beams with
a high length-to-width ratio. Overcoming this limi-
tation of Euler-Bernoulli’s theory, Timoshenko’s the-
ory is applied. In this theory, the effects of transverse
shear strain are considered. In fact, in Timoshenko’s
theory of beams, a correction factor is required that
depends on the geometrical and material parameters
of the structure. Disadvantages of this theory include
non-zero strain conditions at free surfaces. Correcting
Timoshenko’s beam theory, high-order shear theories
were developed that consider the shear strain distribu-
tion in the beam thickness direction, so that boundary
conditions are established on free surfaces. In other
words, the zero-strain condition is established at free
surfaces without the need to consider the correction
factor. One of the disadvantages of the mentioned the-
ories is that the normal strain in the thickness direc-
tion is not considered. In these theories, the normal
strain in the direction of the thickness of the struc-
ture is considered zero. In other words, the length of
the element remains constant in the direction of the
thickness of the structure before deformation and after
deformation, which is, of course, correct for structures
with low thickness. Zenkourhas proposed a modified
theory in which he considers the effects of both shear
strain and normal stress in the direction of thickness.
In a study by Zenkour and Arefi, using non-local beam
theory that considers the effects of normal deforma-
tion and transverse shear, they conducted a thermo-
mechanical analysis of a nano-beam with a core and
with functional gradient properties and two piezomag-
netic layers. In another study, Zenkour and Arefi stud-
ied the free vibrations of a three-layer microbeam con-
sisting of an elastic microcore and two piezomagnetic
layers located on the Pasternak foundation. In their re-
search, a three-parameter kinematic theory was used,
which considers the effects of normal deformation and
transverse shear [41–43]:

Considering the Third-Order Shear Deformation
Theory, the assumption that the rotational inertia and
lateral shear strains γxz and γθz are negligible is not
valid, and only the normal strain component εz is con-
sidered zero. The displacement field of the cylindrical
shell according to the Third-Order Shear Deformation
Theory is as follows [44–46]:

u (x, θ, z) = u0 (x, θ) + zu1 (x, θ) + z2u2 (x, θ)

+ z3u3 (x, θ)

v (x, θ, z) = v0 (x, θ) + zv1 (x, θ) + z2v2 (x, θ) (9)

+ z3v3 (x, θ)

w (x, θ, z) = w (x, θ)
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u0, v0, and w0 define displacements of midplane sur-
face of the panel at (z = 0) in the x, θ, and z directions,
and u1 and v1 are respectively the rotations of the mid-
plane surface around the x and θ axes. Satisfying the
zero shear strain condition at the boundary surfaces of
the panel γθz

(
x, θ,±h

2

)
= 0 and γxz

(
x, θ,±h

2

)
= 0)

and using the approximation (1 + h
a ) ∼= 1, Eq. (9) is

rewritten as follows:

u (x, θ, z) = u0 + zu1 − c0z
3 (u1 + w,x)

v (x, θ, z) = v0 + zv1 − c0z
3
(
v1 +

w,θ
a

)

w (x, θ, z) = w (x, θ)

(10)

where coefficient C0 in Eq. (10) is defined as C0 = 4
3h2 .

By substituting Eq. (10) in the displacement strain re-
lations (8), the kinematic relations are as follows:

εxx = εx + zkx + z3k1

εθθ = εθ + zkθ + z3k2

γxθ = γxθ + 2zkxθ + 2z3k3

γxz = γxz + 2z2kxz

γθz = γθz + 2z2kθz

εzz = 0

(11)

where:





εxm
εθm
γxθm
γxzm
γθzm





=





u0,x + 1
2w

2
,x

v0,θ+w
a + 1

2

(
−w,θ

a

)2

u0,θ

a + v0,x +
(

+w,xw,θ

a

)

u1 + w,x

v1 +
w,θ

a





,





kx
kθ
kxθ
kxz
kθz





=





u1,x
v1,θ
a

1
2

(u1,θ

a + v1,x
)

− 3c0
2 (u1 + w,x)

− 3c0
2

(
v1 +

w,θ

a

)




, (12)





k1
k2
k3



 =





−c0 (u1,x + w,xx)
− c0

a

(
v1,θ +

w,θθ

a

)

− c0
2

(
u1,θ

a + v1,x +
2w,xθ

a

)





Therefore, the non-linear strain- displacement rela-
tion is as follows:

εxx = u0,x +
1

2
w2

,x + zu1,x − c0z
3 (u1,x + w,xx)

εθθ =
v0,θ + w

a
=

1

2

(−w,θ

a

)2

+
zv1,θ
a

− c0
a
z3
(
v1,θ +

w,θθ

a

)
(13)

γxθ =
u0,θ
a

+ v0,x +

(
+w,xw,θ

a

)
+ z

(u1,θ
a

+ v1,x

)

− c0z
3

(
u1,θ
a

+ v1,x +
2w,xθ

a

)

γxz = w,x + u1 − 3c0z
2 (u1 + w,x)

γθz =
1

a
w,θ + v1 − 3c0z

2
(
v1 +

w,θ

a

)

Moreover, the stress-strain relations for orthotropic
plates are as follows [47]:





σx
σθ
τθz
τxz
τxθ





=




Q11 Q12 0 0 0
Q21 Q22 0 0 0

0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66








εxx−α11∆T

εθθ−α22∆T

γθz
γxz
γxθ





(14)

where Q is the stiffness matrix, and its values are de-
fined as follows [47, 48]:

Q11 =
E11

1 − v12v21
,

Q12 =
v21E11

1 − v12v21
,

Q22 =
E22

1 − v12v21
,

Q66 = G12,

Q55 = G13

Q44 = G23,

(15)

In Eq. (10), the coefficients G12, v12, v21, E22, E11,
and G23 are calculated from the modified rule of mix-
tures. The resulting forces and moments are defined as
follows [16]:

(Ni,Mi, Pi) =

∫ h/2

−h/2

σi
(
1, z, z3

)
dz, (i = x, θ, xθ)

(Qi, Ri) =

∫ h/2

−h/2

τiz
(
1, z2

)
dz, (i = x, θ) (16)

By placing Eqs. (13) and (11) in Eq. (15), the
structural equations for the cylindrical shell will be ob-
tained as follows [40, 44]:

Nx = εxmA11 + kxB11 + k1F11 + εθmA12 + kθB12

+ k2F12 −A11α11∆T −A12α22∆T

Nθ = εxmA21 + kxB21 + k1F21 + εθmA22 + kθB22

+ k2F22 −A21α11∆T −A22α22∆T

Nxθ = γxθmA66 + 2kxθB66 + 2k3F66
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Mx = εxmB11 + kxD11 + k1H11 + εθmB12 + kθD12

+ k2H12 −B11α11∆T −B12α22∆T

Mθ = εxmB21 + kxD21 + k1H21 + εθmB22 + kθD22

+ k2H22 −B21α11∆T −B22α22∆T

Mxθ = γxθmB66 + 2kxθD66 + 2k3H66

Px = εxmF11 + kxH11 + k1I11 + εθmF12 + kθH12

+ k2I12 − F11α11∆T − F12α22∆T (17)

Pθ = εxmF21 + kxH21 + k1I21 + εθmF22 + kθH22

+ k2I22 − F21α11∆T − F22α22∆T

Pxθ = γxθmF66 + 2kxθH66 + 2k3I66

Qx = KγxzmA55 + 2KkxzD55

Qθ = KγθzmA44 + 2KkθzD44

Rx = KγxzmD55 + 2KkxzH55

Rθ = KγθzmD44 + 2KkθzH44

where in the above relation, the strain coefficients are
defined as follows:

(Aij , Bij , Dij , Fij , Hij , Iij)

=

∫ h2

−h2

Qij

(
1, z, z2, z3, z4, z6

)
dz

=

∫ h2

−h2

Qij

(
1, z, z2, z3, z4, z6

)
dz (18)

(
i = 1, 2
j = 1, 2

)
, (i = j = 4) , (i = j = 5) ,

(i = j = 6)

Inhomogeneous Qij is a function of z.
In the above equations, because Q12 = Q21 and the

distribution of nanotubes in the matrix are symmetric
to the midplane surface (do not depends on z), there-
fore:

(Bij , Fij) = 0
(
i = 1, 2
j = 1, 2

)
, (i = j = 4) , (i = j = 5) , (19)

(i = j = 6)

Therefore, according to the above relations, the
equations of forces and torques are as follows:

(Aij , Dij , Hij , Iij) =

∫ h2

−h2

Qij

(
1, z2, z4, z6

)
dz

=

∫ h2

−h2

Qij

(
1, z2, z4, z6

)
dz (20)

(
i = 1, 2
j = 1, 2

)
, (i = j = 4) , (i = j = 5) ,

(i = j = 6)

In the present study, the energy method has been
used to achieve equilibrium equations. The total po-
tential energy V for the shell, when U is the strain

energy and Ω is the potential energy of the applied me-
chanical forces (work of external forces) and Uf is the
energy caused by the elastic foundation on the shell,
then [40]:

V = U − Ω−Uf − UT (21)

The potential energy Ω, when the shell is under the
axial load of the compressive edges, is:

Ω =

∫ ∫
P

α
u,xdθdx,

The energy from Uf is:

Uf =
1

2

∫ L

0

∫ α

0

[
Kww

2
0 +

1

a2
kg
(
W 2

0,θ

)
+Kgw

2
0,x

]

adθdx

The energy caused by thermal strain:

UT =
1

2

∫ L

0

∫ α

0

∫ h/2

−h/2

(σxxα11 + σθθα22) ∆T adzdθdx

Therefore, the total potential energy can be written
as follows:

V =
1

2

∫ L

0

∫ α

0

∫ h
2

−h
2

[σxεx + σθεθ + σxθεxθ

+ σxzεxz + σθzεθz − (σxxα11 + σθθα22) ∆T ]dzdθdx

− 1

2

∫ L

0

∫ α

0

[
Kww

2
0 +

1

a2
kg
(
W 2

0,θ

)
+Kgw

2
0,x

]
adθdx

+

∫ L

0

∫ α

0

P

α
u,xdθdx, (22)

On the other hand, the functional of the total po-
tential energy is as follows:

V =

∫ ∫
Fdxdθ

By substituting Eqs. (14) and (11) in Eq. (20) and
applying the minimum energy principle to the func-
tion of the total potential energy by using the Euler
equatins, equilibrium equations are obtained as follows
(For the sake of brevity, details on deriving the equi-
librium equations are given in appendix A.):

aNx,x +Nxθ,θ = 0

aNxθ,x +Nθ,θ = 0

−Nθ + aw,xxNx + 2w,xθNxθ + aQx,x − 4a

h2
Rx,x

+
1

a
w,θθNθ +Qθ,θ −

4

h2
Rθ,θ +

4

3h2
aPx,xx

+
4

3ah2
Pθ,θθ +

8

3h2
Pxθ,xθ

+ akg

(
w0,xx +

1

a2
w0,θθ

)
− akww0 = −aPe
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− aQx +
4

h2
aRx + aMx,x − 4

3h2
aPx,x +Mxθ,θ

− 4

3h2
Pxθ,θ = 0

−aQθ +
4

h2
aRθ + aMxθ,x − 4

3h2
aPxθ,x +Mθ,θ

− 4

3h2
Pθ,θ = 0 (23)

The stability equations of single-walled carbon nan-
otubes reinforced cylindrical panels on elastic founda-
tion subjected to mechanical loads based of TSDT are
obtained in this section. Consider V as the total en-
ergy of the panel, taylor expansion of the total energy
of the panel V is such that:

∆V = δV +
1

2!
δ2V +

1

3!
δ3V

In fact, δV (first variation of the total energy) is
related to equilibrium of the structure and the δ2V is
the original form of the stability in adjacent equilib-
rium position.

δ(δ2V ) = 0

Equilibrium equations are nonlinear and because
of this reason we derive the stability equations. To
investigate the possibility of equilibrium in the adja-
cent position, the components of displacements on the
primary equilibrium path are perturbed infinitesimally
to establish an adjacent equilibrium position, then the
new format of displacement components is substituted
into equilibrium equations to obtain the stability criti-
cal load of the cylindrical panel which is in stable equi-
librium position that is expressed by u0, v0, w0, φ0,
and Ψ0 displacements. Therefore, displacement com-
ponents associated to the secondary equilibrium path
are:

u = u0 + u1 v = v0 + v1 w = w0+w1

u1 = φ0 + φ1 v1 = Ψ0 + Ψ1

(24)

Additionally, the values of the stress resultants de-
pend on adjacent equilibrium position as:

Nx = Nx0 + ∆Nx, Px = Px0 + ∆Px,

Nx = Nx0 + ∆Nx, Px = Px0 + ∆Px,

Rx = Rx0 + ∆Rx Nθ = Nθ0 + ∆Nθ,

Pθ = Pθ0 + ∆Pθ, Rθ = Rθ0 + ∆Rθ

Nxθ = Nxθ0 + ∆Nxθ, Pxθ = Pxθ0 + ∆Pxθ

Mx = Mx0 + ∆Mx, Qx = Qx0 + ∆Qx

Mθ = Mθ0 + ∆Mθ, Qθ = Qθ0 + ∆Qθ,

Mxθ = Mxθ0 + ∆Mxθ

(25)

Rθ1, Rx1, Pxθ1, Pθ1, Mxθ1, Mθ1, Mx1, Qθ1, Qx1, Nxθ1,
Nθ1, Nx1 are the linear part of the ∆Rθ, ∆Rx, ∆Pxθ,

∆Pθ, ∆PX , ∆Mxθ, ∆Mθ, ∆Mx,∆Qθ, ∆Qx, ∆Nxθ,
∆Nθ, ∆Nx are going to explain.

Rθ1, Rx1, Pxθ1, Pθ1, PX1, Mxθ1, Mθ1, Mx1, Qθ1,
Qx1, Nxθ1, Nθ1, Nx1 are functions of ψ1, φ1, w1, v1,
u1 displacements.

where the subscript (0) represents the equilibrium
position, and the subscript (1) represents an infinites-
imally perturbation. For the sake of brevity, complete
strain and stress resultant expressions are given in ap-
pendix B.

By substituting strain components given in ap-
pendix B, in Eq. (22) and by powering second order
terms, the second variation of potential energy is ob-
tained as:

1

2
δ2V =

∫ L

0

∫ 2π

0

{[
(εxm0 + εxm1)Nx + (kx0 + kx1)Mx

+ (k10 + k11)Px

]

+ [(εθm0 + εθm1)Nθ + (kθ0 + kθ1)Mθ

+ (k20 + k21)Pθ

]
+ [(γxθm0 + γxθm1)Nxθ

+ 2 (kxθ0 + kxθ1)Mxθ + 2 (k30 + k31) pxθ
]

+ 1 [(γXzm0 + γxθm1)Qx + 2 (kxz0 + kxz1)Rx]
}

+ 1 [(γθzm0 + γθm1)Qθ + 2 (kθz0 + kθz1)]

+
1

2

[
kww

2
1 + kg(w1,x)

2
+

1

a2
kg(w1,θ)

2

]
adθdx

(26)

Therefore the functional F in terms of strain com-
ponents is given by

F =

{
A11ε

2
xm1 +A22ε

2
θm1 + 2A12εxm1εθm1 +A44ε

2
θzm1

+A55ε
2
xzm1 +A66ε

2
xθm1 +D11k

2
x1 +D22k

2
θ1

+ 2D12kx1kθ1 + 4D44kθz1εθzm1 + 4D55kxz1εxzm1

+ 4D66k
2
xθ1 + 2H11k1kx1 + 2H22k21kθ1

+ 2H12 (k1kθ1 + k21kx1) + 4H44k
2
θz1 + 4H55k

2
xz1

+ 8H66k31kxθ1 + I11k
2
1 + I22k

2
21 + 2I12k1k21

+ 4I66k
2
31 + (A11εxm0 +A12εθm0)ψ2

x1

+ (A11εθm0 +A12εxm0)ψ2
θ1] +A66εxm0ψx1ψθ1

+
1

2

(
kww

2
1 + kg(w1,x)

2
+

1

a2
kg(w1,θ)

2

)}
(27)

By use of the fuctional in Eq. (27) and the Eu-
ler equations, the stability equations are obtained as
follows:

aNx1,x +Nxθ1,θ = 0

aNxθ1,x +Nθ1,θ = 0
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−Nθ1 + aw1,xxNx0 + 2w1,xθNxθ0 + aQx1,x − 4

h2
aRx1,x

+
1

a
w1,θθNθ0 + 1Qθ1,θ −

4

h2
Rθ1,θ +

4

3h2
aP x1,xx

+
4

3ah2
Pθ1,θθ +

8

3h2
Pxθ1,xθ + akg

[
w1,xx +

1

a2
w1,θθ

]

− akww1 = 0 (28)

−aQx1 +
4

h2
aRx1 + aMx1,x − 4

3h2
aP x1,x +Mxθ1,θ

− 4

3h2
Pxθ1,θ = 0

−aQθ1 +
4

h2
aRθ1 + aMxθ1,x − 4

3h2
aP xθ1,x +Mθ1,θ

− 4

3h2
Pθ1,θ = 0

where Nxθ0, Nθ0, and Nx0 are pre-buckling forces.

4. Analysis of the Cylindrical Panel
Buckling

Assuming that the shell in question is subjected to a
P axial load, the resulting pre-buckling forces are cal-
culated using the following equations [40]:

Nxθ0 = 0,

Nx0 = 0,
(29)

If the buckling force is mechanical:

Nxθ0 = 0,

Nθ0 = 0,

Nx0 = − P

aα

If the pre-buckling force is thermal:

Nx0 = β∆T = ∆T

∫ h/2

−h/2

(α11Q11 + α22Q12)dz

According to the boundary conditions of the simple
support at both ends of the shell, the following equa-
tions are established:

w1 = v1 = Nx = Mx = 0 (30)

According to the boundary conditions considered
for the shell, the displacement components are equal
to the following relations:

u1 =
∞∑

n=1

∞∑

m=1

Ux0 sin (βmθ) cos (Pnx),

v1 =

∞∑

n=1

∞∑

m=1

Uθ0 cos (βmθ) sin (Pnx),

w1 =
∞∑

n=1

∞∑

m=1

Uz0 sin (βmθ) sin (Pnx), (31)

φ1 =
∞∑

n=1

∞∑

m=1

Ux1 sin (βmθ) cos (Pnx),

ψ1 =
∞∑

n=1

∞∑

m=1

Uθ1 cos (βmθ) sin (Pnx),

where:

βm =
mπ

α
, Pn =

nπ

L
,

which are fixed values. m and n are the numbers of
waves in the direction θ and x, and they are m,n =
1, 2, 3, . . . By placing the above solutions in the equa-
tions of stability, equations are obtained that can be
represented as the following matrix.



a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55







Ux0

Uθ0

Uz0

Ux1

Uθ1




=




0
0
0
0
0




(32)

The condition for having a non-zero solution for the
system of Eq. (32) is that the determinant of the coeffi-
cients is equal to zero. By obtaining the load and buck-
ling temperature in terms of functions of parameters m
and n and minimizing it to these two parameters, the
critical buckling temperature load will be obtained.

5. Numerical Results

This section presents thermo-mechanical buckling of
nanocomposite shell with polymethyl methacrylate
matrix reinforced with single-walled carbon nanotubes
(10,10) under simple support conditions under com-
pressive and thermal axial loading effect, in two states
of uniform distribution, and non-uniform (graded) dis-
tribution of nanotubes are discussed. For this purpose,
it is first needed to characterize the material attributes
of carbon-reinforced composite nanotubes. Moreover,
to make the reinforced structure more specific, the dis-
tribution of nanotubes in the shell section is shown in
Fig. 3. The properties of carbon nanotubes of type
(10,10) are listed in Table 4, where L is the length, R
is the radius, h is the thickness, and v is the Poisson’s
ratio. Table 3 also shows the dependence of the elastic
and shear modulus of carbon nanotubes on tempera-
ture. In this paper, the values are considered at room
temperature (300k).

In Tables 1, 2, and 3, a comparative study has
been done between the present work and the references
[40, 49–51] to prove the correctness of the research.

Table 1
Buckling critical temperature (k) for isotropic cylindrical shell
exposed to the uniform heat load.

Homogenous E (GPa) µ [37] Present work
Alumina 380 0.3 19.672 19.6721
Aluminum 70 0.3 3.6238 3.6253
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Fig. 3. The distribution of nanotubes in the section of the panel.

Table 2
Buckling critical temperature (k) for isotropic cylindrical shell
exposed to the uniform heat load.

Homo-
E (GPa) µ

α
[46] [47]

Present

genous 10−6 1
K work

Alumina 380 0.3 7.4 567.8 597.2 559.24

Aluminum 70 0.3 23 182.6 187.3 183.31

Table 3
Critical buckling temperature (K) for cylindrical shell reinforced
with carbon nanotubes exposed to the uniform heat load
Subject matter PMMA ( l

a
= 1, h

a
= 0.01, a = 0.5m, VCN =

0.12, α = 2π).

Subject
E (GPa) µ

α
VCN [48]

Present

matter 10−6 1
K work

PMMA 2.5 0.34 45

0.12 31.749 32.251

0.17 37.346 41.792

0.28 32.110 31.505

Table 4
Material properties of single-walled carbon nanotubes (10,10)
[15].

Type of tubes L R h vCN
12

SWCNT
9.26Nm 0.68Nm 0.067Nm 0.175

(10,10)

Table 5
Dependence of material properties of single-walled carbon nan-
otubes (10,10) [15]
We also have a polymethacrylate (PMMA) matrix for material
properties [15]
Em = 2.5GPa, Gm = 0.933GPa, vm = 0.34.

Temp. (k) ECN
11 (TPa) ECN

22 (TPa) GCN
12 (TPa)

300 5.6466 7.0800 1.9445

500 5.5308 6.9348 1.9643

700 5.4744 6.8641 1.9644

1000 5.2814 6.6220 1.9451

As shown in Table 6, the improved rules of mixtures
are in worthy compliance with the results of molecu-
lar dynamics. However, for more accurate values, the
efficiency coefficient of nanotubes can be deliberated
by the rules of mixtures and the results of molecular
dynamics. Based on previous research in the field of

nanocomposites, in the present study, the hypotheses
G12 = G23 = G13 and η3 = η2 have been considered.

Fig. 4 illustrates critical load for different distribu-
tions of carbon nanotubes versus h/a for VCNT = 0.28.
As seen in Fig. 4, the FG-X distribution results in the
most critical load and and the FG-O distributions re-
sult in the lowest amount of critical load. Figs. 5
and 6 show the critical buckling load values for the
cylindrical panel reinforced with single-walled carbon
nanotubes of type (10,10) under axial load, in uniform
(UD) and non-uniform distribution (FG) for different
amount of the volume deduction of carbon nanotubes
in terms of parameters l/a (length/radius) and h/a
(thickness/radius). Furthermore, Fig. 7 shows the
buckling load of the shell with its opening angle. Fig.
8 illustrates an evaluation between the buckling load
of the shell in the existence of elastic basis for a vol-
ume fraction of 0.12 in the FG and UD states of the
nanotubes. Fig. 9 compares the effect between homo-
geneity and heterogeneity of the nanocomposite matrix
on the critical buckling temperature.

Table 6
Results of molecular dynamics and rules of mixtures [15].

Molecular dynamics Rules of mixtures

VCN
E11 E22 E11

η1
E22

η2
(TPa) (TPa) (TPa) (TPa)

0.12 94.6 2.9 78.94 0.137 2.9 1.022

0.17 138.9 4.9 68.138 0.142 4.9 1.626

0.28 224.2 5.5 224.50 0.141 5.5 11.585

Figs. 10 and 11 show that critical load increases
by increasing the amount of Pasternak and Winkler
coefficients. Fig. 12 depicts critical temprature for
different distributions of carbon nanotubes versus h/a
for VCNT = 0.28. As seen in Fig. 12, the FG-X dis-
tribution results in the highest critical temprature and
the FG-O distribution resluts in the lowest amount of
critical temperature.

Figs. 13 and 14 show the critical buckling tem-
perature values for the cylindrical panel reinforced
with SWCNs of type (10,10) under heat load, in uni-
form(UD) and non-uniform(FG) states, respectively,
for different amount of volume deduction of carbon
nanotubes in terms of parameters l/a (length/radius)
and h/a (thickness/radius).
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Fig. 4. Results of critical buckling load for different
distributions of nanotubes
(VCNT = 0.28, l = a = 1m, α = π

6 , kg = 10, kw = 100,
µ′ = 0.4).

Fig. 5. Results of critical buckling load in l/a in FG
and UD distributions of nanotubes
(l = a = 1m α = π

6 , kg = 10, kw = 100, µ′ = 0.4).

Fig. 6. Results of critical load in l/a in the FG and
UD distributions of nanotubes
a = 1m, h

a = 0.01, α = π
6 , kg = 10, kw = 100, µ′ = 0.4.

Fig. 7. Critical buckling load in terms of panel span
angle in FG and UD distributions of nanotubes
(a = 1m, l

a = 1, h
a = 0.01, kg = 10, kw = 100,

µ′ = 0.4).

Fig. 8. Results of critical buckling load in h/a for the
presence or absence of elastic foundation in the distri-
bution of FG and UD nanotubes.

Fig. 9. Comparison between the effect of homogene-
ity and non-homogeneity of nanocomposite matrix on
critical buckling load in terms of volume fraction
(a = 1m, l

a = 1, h
a = 0.04, kg = 10, kw = 100,

µ′ = 0.4).
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Fig. 10. Critical buckling load in terms of Pasternak
coefficient for uniform disrtibution
(a = 1m, l

a = 1, h
a = 0.01, kw = 0, µ′ = 0.4).

Fig. 11. Critical buckling load in terms of Winkler
coefficient for uniform disrtibution
(a = 1m, l

a = 1, h
a = 0.01, kg = 0, µ′ = 0.4).

Fig. 12. Results of critical buckling temprature for
different distributions of nanotubes (VCNT = 0.28,
l = a = 1m, α = π

6 , kg = 10, kw = 100, µ′ = 0.4.

Fig. 13. Results of critical buckling temperature in
terms of h/a in the FG and UD distributions of the
nanotubes (l = a = 1m, α = π

6 , kg = 10, kw = 100,
µ′ = 0.4).

Fig. 14. Results of critical temperature in l/a in the
FG and UD distributions of nanotubes
(a = 1m, h

a = 0.01, α = π
6 , kg = 10, kw = 100,

µ′ = 0.4).

Fig. 15. Results of critical buckling temperature in
terms of panel span angle in FG and UD distribution
states of nanotubes (a = 1m, l

a = 1, h
a = 0.01, kg = 10,

kw = 100, µ′ = 0.4).
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Fig. 15 also shows the buckling temperature of the
shell in terms of its span angle. Fig. 16 shows a com-
parison between the critical shell temperature in the
existence of a flexible basis for a volume fraction of 0.12
in the FG-X and UD states of the nanotubes. Fig. 17
shows a comparison of the effect between homogeneity
and non-homogeneity of nanocomposite matrix on the
critical temperature of the buckling.

Figs. 18 and 19 illustrate that the critical tempra-
ture increases by growing the amount of Pasternak and
Winkler coefficients.

Fig. 16. Results of critical buckling temperature in
h/a for the presence or absence of elastic foundation
in the FG and UD distribution states of the nanotubes
(kg = 103, kw = 106, a = 1m, l

a = 1, h
a = 0.01).

Fig. 17. Comparison between the effect of homogene-
ity and non-homogeneity of nanocomposite matrix on
critical buckling temperature in terms of volume frac-
tion (a = 1m, l

a = 1, h
a = 0.01, kg = 103, kw = 108,

µ′ = 0.4).

6. Conclusions

Thermo-mechanical buckling of composite carbon nan-
otubes reinforced cylindrical panels under axial pres-
sure and uniform temperature rise was investigated in

the present research. The innovative tips of present
work are as follows:

• Use of the third-order theory of shear deforma-
tions for modeling.

• Considering a non - homogeneous material.

• Investingation of different nano tubes distribu-
tions.

• Effect of elastic substrate on critical mechanical
and thermal loads.

Fig. 18. Critical buckling temprature in terms of
Pasternak coefficient for uniform disrtibution
(a = 1m, l

a = 1, h
a = 0.01, kw = 0, µ′ = 0.4).

Fig. 19. Critical buckling temprature in terms of Win-
kler coefficient for uniform disrtibution
(a = 1m, l

a = 1, h
a = 0.01, kg = 0, µ′ = 0.4).

The following issues are concluded from the present
analysis:

• By increasing the ratio of thickness to the radius
of the shell, in all amounts of the volume deduc-
tion of nanotubes, rise in the buckling load is
observed. In the state of FG distribution of nan-
otubes, the buckling load is greater than the state
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of uniform distribution. Additionally, by increas-
ing the volume deduction of the nanotube, both
in uniform and FG distribution, the critical load
increases.

• The FG-X and FG-O distributions result in the
highest and lowest amounts of thermal and me-
chanical critical loads, respectively.

• By increasing the ratio of length to the shell ra-
dius at a constant thickness in the state of uni-
form distribution, the critical load has a sudden
decrease to the limit of L/a < 0.6, and since then,
it remians constant.

• The buckling load increases and reaches its maxi-
mum amount in the complete-cylindrical shell by
increasing the panel span angle.

• The presence of a flexible basis significantly in-
creases the buckling load.

• Non-homogeneity of the nanocomposite matrix
causes a slight increase in the critical buckling
load.

• By increasing the ratio of length to the radius
of the shell at a constant thickness in the uni-
form and functionally graded states, the critical
temperature decreases abruptly to the limit of
L/a < 0.6 and remains constant since then.

• By increasing the panel span angle, the buckling
temperature increases and reaches its maximum
value in a complete cylindrical shell.

• The presence of an elastic foundation causes
the critical temperature to increase significantly,
where the effect of critical temperature is higher
than that of the buckling load.

• Non-homogeneity of the nanocomposite matrix
causes a slight reduction of the critical buckling
temperature.

Appendix A

V =
1

2

∫ L

0

∫ 2π

0

∫ h2

−h2

[
σx
(
εxm + zkx + z3k1

)

+ σθ
(
εθm + zkθ + z3k2

)

+ τxθ
(
γxθm + 2zkxθ + 2z3k3

)

+ τxz
(
γxzm + 2z2kxz

)

+ τθz
(
γθzm + 2z2kθz

) ]
adzdθdx (A.1)

+

∫ L

0

∫ 2π

0

[
(−P e/aα)w

]
adθdx

+
1

2

∫ l

0

∫ 2π

0

[
Kww

2
0 +Kg

(
w2

0,x +
1

a2
w2

0,θ

)]

adθdx

By integrating with respect to z:

V =
1

2

∫ L

0

∫ 2π

0

[(
εxm

∫ h
2

−h
2

σxdz

︸ ︷︷ ︸
Nx

+ kx

∫ h
2

−h
2

σxzdz

︸ ︷︷ ︸
Mx

+k1

∫ h
2

−h
2

σxz
3dz

︸ ︷︷ ︸
Px

)

+

(
εθm

∫ h
2

−h
2

σθdz

︸ ︷︷ ︸
Nθ

+ kθ

∫ h
2

−h
2

σθzdz

︸ ︷︷ ︸
Mθ

+ k2

∫ h
2

−h
2

Eθz3dz

︸ ︷︷ ︸
Pθ

)

+

(
γxθm

∫ h
2

−h
2

τxθdz

︸ ︷︷ ︸
Nxθ

+2kxθ

∫ h
2

−h
2

τxθzdz

︸ ︷︷ ︸
Mxθ

+ 2k3

∫ h
2

−h
2

τxθz
3dz

︸ ︷︷ ︸
Pxθ

)
(A.2)

+

(
γxzm

∫ h
2

−h
2

τxzdz

︸ ︷︷ ︸
Qx

+2kxz

∫ h
2

−h
2

τxzz
2dz

︸ ︷︷ ︸
Rx

)]

+

(
γθzm

∫ h
2

−h
2

τθzdz

︸ ︷︷ ︸
Qθ

+2kθz

∫ h
2

−h
2

τθzz
2dz

)]
+ adθdx

+

∫ L

0

∫ 2π

0

[−P ew] adθdx

+
1

2

∫ L

0

∫ 2π

0

[
Kww

2
0 +Kg

(
w2

0,x +
1

a2
w2

0,θ

)]

adθdx

Therfore

V =

∫ L

0

∫ 2π

0

1

2

[(
εxmNx + kxMx + k1Px

)

+

(
εθmNθ + kθMθ + k2Pθ

)

+

(
γxθmNxθ + 2kxθMxθ + 2k3Pxθ

)

+

(
γxzmQx + 2kxzRx

)
(A.3)

+

(
γθzmQθ + 2kθzRθ

)
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− 2P ew +Kww
2
0 +

1

a2
kg
(
W 2

0,θ

)
+Kgw

2
0,x

]

adθdx

V =

∫ L

0

∫ 2π

0

1

2
[F ]adθdx

=

∫ L

0

∫ 2π

0

1

2
F (u0, v0, w, u0,θ, v0, x, v0,θ, vx, wθ, wxx,

vθθ, wxθ)adθdx (A.4)

Therefore the functional F is obtained as follow:

F =
1

2
(εxmNx + kxMx + k1Px)

+
1

2
(εθmNθ + kθMθ + k2Pθ)

+
1

2
(γxθmNxθ + 2kxθMxθ + 2k3Pxθ)

+
1

2
(γxzmQx + 2kxzRx) (A.5)

+
1

2
(γθzmQθ + 2kθzRθ) − Pew

+
1

2

(
Kww

2
0 +

1

a2
kg
(
W 2

0,θ

)
+Kgw

2
0,x

)

With the aid of Eqs. (12) and (17), the functional
F obtained in terms of displacement components as
follow:

F =
1

2

(
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1

2
w2

,x
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2
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2
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(A.6)
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]
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2
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a
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]

+
1

2
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)

[(
v1 +

w,θ

a
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(
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(
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Euler Equations are as follow:

∂F

∂u0
− ∂

∂x

∂F

∂u0,x
− ∂

∂θ

∂F

∂u0,θ
= 0

∂F

∂v0
− ∂

∂x

∂F

∂v0,x
− ∂

∂θ

∂F

∂v0,θ
= 0

∂F

∂w
− ∂

∂x

∂F

∂w,x
− ∂

∂θ

∂F

∂w,θ
+

∂2

∂x2
∂F

∂w,xx

+
∂2

∂x∂θ

∂F

∂w,xθ
+

∂2

∂θ2
∂F

∂w,θθ
= 0 (A.7)

∂F

∂u1
− ∂

∂x

∂F

∂u1,x
− ∂

∂θ

∂F

∂u1,θ
= 0

∂F

∂v1
− ∂

∂x

∂F

∂v1,x
− ∂

∂θ

∂F

∂v1,θ
= 0
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Appendix B

The stress resultants at the primary equilibrium posi-
tion:

Nx0 = εxm0A11 + εθm0A12

Nθ0 = εxm0A21 + εθm0A22

Nxθ0 = γxθm0A66

Mx0 = kx0D11 + k10H11 + kθ0D12 + k20H12

Mθ0 = kx0D21 + k10H21 + kθ0D22 + k20H22

Mxθ0 = 2kxθ0D66 + 2k30H66

Px0 = kx0H11 + k10I11 + kθ0H12 + k20I12 (B.1)

Pθ0 = kx0H21 + k10I21 + kθ0H22 + k20I22

Pxθ0 = 2kxθ0H66 + 2k3I66

Qx0 = γxzm0A55 + 2kxz0D55

Qθ0 = γθzm0A44 + 2kθz0D44

Px0 = γxzm0D55 + 2kxz0H55

Rθ0 = γθzm0D44 + 2kθz0H44

Also, the incremental values of the stress resultants
are obtained as:

Nx1 = εxm1A11 + εθm1A12

Nθ1 = εxm1A21+εθm1A22

Nxθ1 = γxθm1A66

Mx1 = kx1D11+k1H11+kθ1D12+k21H12

Mθ1 = kx1D21+k1H21+kθ1D22+k21H22

Mxθ1 = 2kxθ1D66+2k3H66

Px1 = kx1H11+k1I11+kθ1H12+k21I12 (B.2)

Pθ1 = kx1H21+k1I21+kθ1H22+k21I22

Pxθ1 = 2kxθ1H66+2k31I66

Qx1 = γxzm1A55+2kxz1D55

Qθ1 = γθzm1A44+2kθz1D44

Rx1 = γxzm1D55+2kxz1H55

Rθ1 = γθzm1D44+2kθz1H44

Linear strain relations for equilibrium state denoted
by subscript “0” and the adjacent position by “1”. The
strain components are such that:

εxm = εxm0 + εxm1, kx = kx0 + kx1

εθm = εθm0 + εθm1, kθ = kθ0 + kθ1,

k1 = k10 + k11

γxθm = γxθm0 + γxθm1, kxθ = kxθ0 + kxθ1,

k2 = k20 + k21 (B.3)

γxzm = γxzm0 + γxzm1, kxz = kxz0 + kxz1,

k3 = k30 + k31

γθzm = γθzm0 + γθzm1, kθz = kθz0 + kθz1

ψx = ψx0 + ψx1, ψθ = ψθ0 + ψθ1

Linear displacements and curvatures in adjacent
position are as follow:

εxm1 = u1,x, kx1 = φ1,x

εθm1 =
v1,θ + w1

a
, kθ1 =

Ψ1,θ

a

γxθm1 =
u1,θ
a

+ v1,x, kxθ1 =
1

2

(φ1,θ

a
+ Ψ1,x

)

γxzm1 = φ1 + w1,x, kxz1 = −3c0
2

(φ1 + w1,x)

γθzm1 = Ψ1 +
w1,θ

a
, kθz1 = −3c0

2

(
Ψ1 +

w1,θ

a

)

ψx1 = −w1,x, k11 = −c0 (φ1,x + w1,xx)

ψθ1 =
−w1,θ

a
, k21 = −c0

a

(
Ψ1,θ +

w1,θθ

a

)

k31 = −c0
2

(
φ1,θ

a
+ Ψ1,x +

2w1,xθ

a

)
(B.4)

The Euler Equations are as follow:

∂F

au1
− ∂

∂x

∂F

∂u1,x
− ∂

∂θ

∂F

∂u1,θ
= 0

∂F

∂v1
− ∂

∂x

∂F

∂v1,x
− ∂

∂θ

∂F

∂v1, θ
= 0

∂F

∂w1
− ∂

∂x

∂F

∂w1,x
− ∂

∂θ

∂F

∂w1,θ
+

∂2

∂x2
∂F

∂w1,xx

+
∂2

∂x∂θ

∂F

∂w1,xθ
+

∂2

∂θ2
∂F

∂w1,θθ
= 0 (B.5)

∂F

∂φ1

− ∂

∂x

∂F

∂φ1,x

− ∂

∂θ

∂F

∂φ1,θ

= 0

∂F

∂Ψ1
− ∂

∂x

∂F

∂Ψ1,x
− ∂

∂θ

∂F

∂Ψ1,θ
= 0
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