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This paper studies the mechanical behavior of a polymeric degradable vessel
subjected to internal pulsatile pressure, external pressure, and axial elon-
gation. Two deformation-induced evolution laws are selected to investigate
time-position-dependent material properties of the polymeric vessel. The
vessel is subjected to the neo-Hookean constitutive model and an axisymmetric
condition. To simulate finite deformation in the degradable vessel, FlexPDE
commercial software is invoked in which the governing equations are solved
by Standard Galerkin Finite Element Method (SGFEM). Results show that
stresses pulsationally increase during degradation. Deformation response of
the degradable vessel against time reveals the creep-like behavior of degradable
polymers. Degradation rate begins from an initial peak value and decreases
over time. The impact of degradation on invariants of the deformation tensor
versus time and the vessel radius is discussed. Degradation evolution is higher
in the outer radius of the vessel because of higher deformation in this region.

Nomenclature

a Stent inner radius B Left Cauchy-Green deformation tensor
b Stent outer radius C Right Cauchy-Green deformation tensor
D Driving force D0 Threshold of degradation
D1 Degradation rate coefficient d Degradation field
F Deformation gradient I Identity tensor tensor
J Volume ratio K Bulk modulus
L Stent length n Rate sensitivity index
p Response to incompressibility R Inner radius of artery
Ri Internal radius of stent T Cauchy stress tensor
T0 First Piola-Kirchhoff stress ta Artery wall thickness
tb Wall thickness behind the core tc Fibrous cap thickness
ts Thickness of the stent uR Lagrangian radial displacement
uZ Lagrangian axial displacement β Degradation constant
Γ Degradation constant ν Poisson ratio
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I1 First invariant of right Cauchy-Green defor-
mation tensor

I2 Second invariant of right Cauchy-Green de-
formation tensor

µ Shear modulus ψ(J) Volumetric portion of Helmholtz energy
function

1. Introduction

Biomaterials are used in biological systems to assess,
treat, enhance, or repair any body tissue or organ.
When the materials are applied during a given time,
at which they should be eliminated as soon as the de-
sired effect is reached, biodegradable materials can be
used. Take, for example, stents, bone scaffolds, su-
ture, screw and platinum of orthopedics, and dental
implants, which are used in the medical industry [1, 2,
and 3].

Polymers are one of the most widely used materials
in biodegradable applications due to their appropriate
physical and chemical properties in a gradual degrada-
tion manner [4]. The loss of mechanical integrity due to
exposure to external factors, such as thermal stimuli,
and mechanical loads, leads to polymer degradations.
Due to the low rate of degradation, the aggressive ma-
terial finds enough time to penetrate into the volume of
degradable polymers, so degradation in the polymers
often occurs in its bulk type. In fact, as the overall
profile of the body is maintained, the mechanical in-
tegrity of the polymer reduces due to chain scissions [5
and 6].

Some of the challenges to experimenting with
biodegradable materials are the danger of in-vivo ex-
periments, expensive costs, and the need for advanced
empirical techniques. As a result, many efforts have
been made to introduce appropriate constitutive mod-
els to predict the behavior of biodegradable materials
[7]. In recent years, many constitutive models have
been proposed to analyze degradation in various case
studies, such as interactions between biodegradable
stents and blood flow [8 and 9] as well as between bones
and biodegradable bone scaffolds [10 and 11]. Accord-
ing to the logic used in the development of evolution
laws, they can be classified into two types: physical
and phenomenological approaches [8].

The physical approach applies the fundamental
principles to derive the constitutive equations, whereas
the phenomenological approach empirically relates an
observed phenomenon to its cause without paying de-
tailed attention to its fundamental significance [12].
The transient diffusion-reaction model with the phys-
ical approach to Poly (L-lactic acid)-covered stents
was presented by Prabhu and Hassainy [13] which
was based on four characteristics: polymer transfer
rate, water molecules, oligomers, and lactic acid coat-
ings. Shazly et al. [14] proposed a physical model of
the polymeric stent in which the transient diffusion-
reaction equations were separately defined for each

bond of the polymer as a function of hydrolysis, the
effect of autocatalysis, and stoichiometric coefficients.
Luo et al. [15] introduced a phenomenological model
for a polymeric stent based on experimental observa-
tion. In this model, the degradation equation was a
function of strain, time, and five experimental con-
stants.

Studies on mechanically induced degradation of
polymers based on the principles of thermodynamics
which implemented according to the phenomenological
approach are significant. A phenomenological model
for polymers was derived by Rajagopal et al. [16]
based on the laws of thermodynamics, in which strain
was considered the only source of dissipation. The en-
ergy function was dependent upon deformation, and a
scalar field was assumed to be equivalent to the degree
of degradation. The dissipation rate was explicitly a
function of degradation. Soares et al. [17] introduced
the nonlinear behavior of polymers with a hyperelastic
constitutive model and provided a phenomenological
model for degradation. In this model, like Rajagopal,
a degradation parameter was used to simulate the re-
duction in material properties. Degradation field was
dependent on the invariants of the Right Cauchy-Green
deformation tensor. In the Khan and El-Sayed model
[18], similar to that of Soares, the degradation equation
was phenomenologically defined, and degradation was
assumed to be equivalent to the reduction in mechan-
ical properties of the material. Nonlinear polymeric
behavior with large deformations was captured by the
Ogden-type hyper-viscoelastic model.

This paper studies a different computational model
from what was studied in [16, 17, and 18]. To study
degradation accurately and quantitatively in practical
applications, especially in medical cases, more aspects
and more real constants should be considered. How-
ever, to make the computational model more practi-
cal, the present study qualitatively investigates the me-
chanical behavior of a vessel subjected to deformation-
induced inhomogeneous-degradation in the coronary
artery. Two phenomenologically based degradation
models, i.e. Rajagopal et al. [16] and Soares et al. [17]
are selected to simulate time-position-dependent ma-
terial properties of the vessel. The vessel is assumed
to include internal pulsatile pressure, external pressure
due to plaque, and axial elongation. The constitutive
model is considered to be neo-Hookean, and the vessel
is assumed to be an axisymmetric model. To solve gov-
erning equations of the degradable vessel, SGFEM is
used. This method is also verified against the analyti-
cal solution to a simple shear case under degradation.
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2. Degradation Models

In this paper, Rajagopal et al. [16] and Soares et al.
[17] evolution laws are selected as the degradation mod-
els. Both of the models are provided based on the phe-
nomenological approach as it would allow to study the
degradation process without using concepts of the mi-
croscopic phenomenon. This is implemented by defin-
ing an internal variable, a scalar field which is termed
as the degree of degradation, in the Helmholtz energy
function (or free-energy function) of neo-Hookean hy-
perelastic material model. When the degradation pro-
cess proceeds, the mechanical properties of the poly-
mer and its capacity to store energy reduce. Therefore,
in addition to deformation, the free-energy function is
also dependent on degradation. In the following, the
fundamental equations governing the two degradable
models are presented, however, more details of the two
models can be observed in [16 and 17].

2.1. Rajagopal Model

The model [16] is based on thermodynamic principles
expressing the response of polymeric material to degra-
dation, known as chain scissions, through the dissipa-
tive energy concepts. The only source of dissipative
energy is assumed to be strain. d = d(x, t) denotes
the degree of local degradation at a given particle lo-
cated at position x and at time t. d = 0 represents the
virgin specimen, and d = 1 corresponds to the state
of maximum possible degradation. According to the
model, the elastic response of the material is similar
to neo-Hookean model if the amount of degradation is
constant. The shear modulus decreases while degrada-
tion increases, so:

µ(d) = µ0(1− βd), (1)

in which µ0 is the initial shear modulus of the virgin
body, and β ≤ 1 is a constant. If β = 1, the failure
continues until full degradation.

The process of polymer degradation is considered
to be quasi-static because of the low degradation rate
[16 and 17]. As a result, the equilibrium equation in
the absence of the body force is:

div(T) = 0 (2)

where T is Cauchy stress tensor:

T = pl+ µ(d)B, B = FFT, (3)

p,F,B, and I are material response to incompressibil-
ity, the deformation gradient, left Cauchy-Green defor-
mation tensor, and identity tensor, respectively.

The evolution law is:

∂d

∂t
=

{
D −D0

D1

}n

(1− d) if D ≥ D0, (4)

where D,D0, D1, and n are the driving force, thresh-
old of degradation, degradation rate coefficient, and
rate sensitivity index, respectively.

The driving force D is defined as a restriction to the
degradation process, so degradation occurs when the
amount of driving force reaches the threshold required
to start degradation in the material. The driving force
depends on F through the first invariant of the Right
Cauchy-Green deformation tensor:

D =
1

2
βµ0(I1 − 3) ≥ 0, I1 = tr(FTF) = tr(C) (5)

in which C is right Cauchy-Green deformation tensor,
and I1 is its first invariant.

Eqs. (2) and (4) regarding the constitutive Eq. (3)
are the fundamental relations governing the Rajagopal
degradation model.

2.2. Soares Model

In this model [17], similar to [16], d = d(x, t) is the
degradation parameter. Shear modulus during the
degradation process changes as [17]:

µ = µ0(1− d)· (6)

The stress-strain relation obeys the neo-Hookean con-
stitutive model following Eq. (3). The degradation
rate is defined as:

∂d

∂t
= Γ(1− d)[(I1 − 3)2 + (I2 − 3)2]1/2,

I2 =
1

2
[(tr(C)− tr(C2)]

(7)

where Γ is the constant associated with material prop-
erties, and I2 is the second invariant of right Cauchy-
Green deformation tensor. If there is no deformation,
I1 = I2 = 3, no degradation occurs [17].

Equilibrium Eq. (2) and evolution Eq. (7) are the
governing equations in the Soares degradation model.

3. The Polymeric Degradable Vessel un-
der Inflation and Extension

Based on two introduced models, a polymeric vessel
with conditions similar to stents in the coronary artery
subjected to the internal pressure on the inner edge,
external pressure on the outer edge, and extensional
deformation is simulated. The vessel is modeled as an
axisymmetric thick-walled cylinder. The loadings are
chosen in a way that the degradation parameter is de-
pendent on both position and time. The percentage of
arterial stenosis decreases through stent expansion and
thereby causes compression in the plaque.
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3.1. Inner Pressure Condition

The inner pressure of the vessel is influenced by pul-
satile blood pressure that changes in a cardiac cycle as
Fig. 1 [19].

3.2. Outer Pressure Condition

To determine the outer pressure, an axisymmetric
model including artery, plaque, and stent, is simulated
in ANSYS based on the schematic model presented in
Fig. 2. In this model, in the initial state, 66% of the
artery lumen is blocked by the plaque and falls to 30%
by stent inflation when imposing radial displacement.
The radial stress imposed on the artery (fibrous cap) is
assumed to be the constant outer pressure of the vessel.
In Fig. 2, the inner radius of the artery R = 1.5mm,
artery wall thickness ta = 0.5mm, wall thickness be-
hind the core tb = 100µm, and fibrous cap thickness
tc = 60µm are defined [20, 21 and 22].

Fig. 1. Inlet pulsatile blood pressure pattern [19].

The plaque profile is modeled as a diffuse shape,
reported as one of the typical coronary plaque in rele-
vant references [ and ]. The length of plaque is assumed
to be 1.3R. The stent is modeled as a circular cylin-
der. The internal radius and thickness of the stent are
Ri = 0.3mm and ts = 0.2mm, respectively. The length
of the stent is assumed to be 2R. The elastic modulus
of the artery and fibrous cap, with the same materials,
are considered to be 1500kPa [25]. The shear modulus
of the polymeric stent is selected to be µ = 1GPa [26
and 17]. The plaque core is mainly composed of lipid,
a very soft tissue of the elastic modulus 10kPa [27 and
22]. Since a significant part of human body tissue is
composed of water, the live tissue tends to be incom-
pressible. Therefore, the Poisson ratio = 0.499 is used
for polymeric stent, artery, and plaque components [25,
28 and 29].

Fig. 2. Dimension of artery, plaque, and stent.

According to the dimensions defined for the model,
the stent is inflated to move 0.55mm in radius direction
and consequently artery stenosis reduces from 66% to
30%. The bottom edge of the stent is fixed in the ax-
ial direction (z direction) and the slide of the stent on
the artery is allowed so that there would be no fric-
tion between the stent and artery. The radial stress
of the fibrous cap is presented in Fig. 3. As can be
seen, the radial stress of the artery is 206kPa in mag-
nitude. Therefore, the pressure 206kPa is applied as
the constant external pressure of the stent.

Fig. 3. Radial stress distribution on artery.

3.3. Degradable Vessel

The vessel with the geometry and material proper-
ties presented in the previous section is subjected to
boundary conditions as Fig. 4. The bottom edge is
fixed in z direction and the top edge is under an exten-
sion of 0.3mm. The inner and outer radii of the vessel
are exposed to the internal pulsatile pressure [19] and
constant external pressure 206kPa, respectively. The
degradation of the vessel is predicted by Soares and
Rajagopal models where degradation constants are as-
sumed to be n = 1, D1 = 4e6 × µ,D0 = 0Pa, β = 1,
and Γ = 7e− 6.

Fig. 4. Boundary conditions for the biodegradable
vessel.
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3.4. Governing Equations

Regarding the axisymmetric and plane strain condi-
tions, displacement field of the degradable vessel in the
Lagrangian description is expressed as:

ur = uR(R,Z, t), uθ = 0, uz = uz(R,Z, t), (8)

where a ≤ R ≤ b and 0 ≤ Z ≤ L are the undeformed
radius and length, respectively. Here, a, b, and L de-
note inner and outer radii and the vessel length, each.
The deformation gradient F, left Cauchy-Green defor-
mation tensor B, and right Cauchy-Green deformation
tensor C can be described as [12]:

F = I+∇u, B = FFT, C = FTF (9)

Regarding the displacement field, F is:

F =


1 +

∂uR(R,Z, t)

∂R
0

∂uR(R,Z, t)

∂Z

0 1 +
uR(R,Z, t)

R
0

∂uZ(R,Z, t)

∂R
0 1 +

∂uZ(R,Z, t)

∂Z


(10)

accordingly, the components of B and C reach:

BRR =

(
1 +

∂uR(R,Z, t)

∂R

)2

+

(
∂uR(R,Z, t)

∂Z

)2

,

BZZ =

(
1 +

∂uZ(R,Z, t)

∂Z

)2

+

(
∂uZ(R,Z, t)

∂R

)2

,

Cθθ = Bθθ =

(
1 +

uR(R,Z, t)

R

)2

,

CRR =

(
1 +

∂uR(R,Z, t)

∂R

)2

+

(
∂uZ(R,Z, t)

∂R

)2

,

CZZ =

(
1 +

∂uZ(R,Z, t)

∂Z

)2

+

(
∂uR(R,Z, t)

∂Z

)2

,

BRZ = BZR =

(
1 +

∂uR(R,Z, t)

∂R

)(
∂uZ(R,Z, t)

∂R

)
,

+

(
1 +

∂uZ(R,Z, t)

∂Z

)(
∂uR(R,Z, t)

∂Z

)
,

CRZ = CZR =

(
1 +

∂uR(R,Z, t)

∂R

)(
∂uR(R,Z, t)

∂Z

)
,

+

(
1 +

∂uZ(R,Z, t)

∂Z

)(
∂uZ(R,Z, t)

∂R

)
,

BRθ = BθR = CRθ = BZθ = BθZ = CZθ = CθZ = 0
(11)

According to Eqs. (4), (5), and (11) Rajagopal’ evolu-
tion law is:

Dd

Dt
=

{
D −D0

D1

}n

(1− d),

D =
1

2
βµ0

{(
1 +

∂uR(R,Z, t)

∂R

)2

+

(
∂uZ(R,Z, t)

∂R

)2

+

(
1 +

uR(R,Z, t)

R

)2

+

(
1 +

∂uZ(R,Z, t)

∂Z

)2

+

(
∂uR(R,Z, t)

∂Z

)2

− 3

}
(12)

where, D( )

Dt
denotes material time derivative.

The degradation rate of Soares’s model is deter-
mined by Eq. (7) and (11):

Dd

Dt
= Γ(1− d)

[
(I1 − 3)2 + (I2 − 3)2

] 1
2 ,

I1 =

(
1 +

∂uR(R,Z, t)

∂R

)2

+

(
∂uZ(R,Z, t)

∂R

)2

+

(
1 +

∂uZ(R,Z, t)

∂Z

)2

+

(
1 +

∂uR(R,Z, t)

R

)2

+

(
∂uR(R,Z, t)

∂Z

)2

,

I2 =
I1
2

− 1

2

{[(
1 +

∂uR(R,Z, t)

∂R

)(
∂uR(R,Z, t)

∂Z

)

+

(
1 +

∂uZ(R,Z, t)

∂Z

)(
∂uZ(R,Z, t)

∂R

)]2

+

[(
1 +

∂uR(R,Z, t)

∂R

)2

+

(
∂uZ(R,Z, t)

∂R

)2 ]2

+

[(
1 +

∂uZ(R,Z, t)

∂Z

)2

+

(
∂uR(R,Z, t)

∂Z

)2 ]2

+

[(
1 +

∂uR(R,Z, t)

∂R

)(
∂uR(R,Z, t)

∂Z

)

+

(
1 +

∂uZ(R,Z, t)

∂Z

)2

+

(
∂uZ(R,Z, t)

∂R

)]2

+

(
1 +

∂uR(R,Z, t)

∂R

)4
}
·

(13)
According to volume ratio J , the determinant of F,

Cauchy’s stress in Eq. (3) can be converted to the first
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Piola-Kirchhoff stress [12]:

T0 = JTF−T,

J =
R+ uR(R,Z, t)

R

[
∂uR(R,Z, t)

∂R

∂uz(R,Z, t)

∂Z

− ∂uz(R,Z, t)

∂R

∂uR(R,Z, t)

∂Z

+
∂uR(R,Z, t)

∂R
+
∂uZ(R,Z, t)

∂Z
+ 1

]
·

(14)

Considering constitutive relation (3) and the com-
ponents of F and B in Eqs. (10) and (11), the equi-
librium equations in the cylindrical annular region can
be obtained regarding the Lagrangian description:
∂

∂R

[
JF−T

RR (pI + µ0(1− βd)BRR)
]

+
1

R

[
(1− βd)Jµ0(F

−T
RRBRR − F−T

θθ Bθθ)

+ PIJ(F−T
RR − F−T

θθ )
]
+

∂

∂Z

[
JF−T

RZ µ0(1− βd)BRZ

]
= 0,

∂

∂R

[
JF−T

RZ µ0(1− βd)BRZ)
]
+

∂

∂Z

[
JF−T

ZZ + µ0(pI

+ µ0(1− βd)BZZ)] +
1

R
[JF−T

RZ µ0(1− βd)BRZ

]
= 0·

(15)
Regarding Fig. 4, the inner radius is exposed to the
pulsatile pressure P puls:

Trr(a, Z, t) = −P plus, for ∀ t ≥ 0 and Z ∈ (0, L)
(16)

The outer boundary is assumed to be the plaque pres-
sure P plaque = −206KPa:

Trr(b, Z, t) = P plaque, for ∀ t ≥ 0 and Z ∈ (0, L)
(17)

The boundary conditions in terms of axial displace-
ment are considered as:

uZ(R, 0, t) = 0, uZ(R,L, t) = 0.3mm, (18)
for ∀ t ≥ 0 and R ∈ (a, b).

The initial condition governing the degradation field is:

d(R,Z, 0) = 0, for R ∈ (a, b) and Z ∈ (0, L)· (19)

It is worth mentioning that in the initial state, the
vessel properties are virgin, d = 0 → µ = µ0, so the
degradable vessel responds as the neo-Hookean mate-
rial model with intact shear modulus.

The constitutive equation for p is defined as [12]:

p(R,Z, t) =
dψ(J)

dJ
= K(J − 1), (20)

in which ψ(J) and K are the volumetric portion of
Helmholtz energy function and bulk modulus, respec-
tively. This relation is commonly used in the volu-
metric portion of free-energy functions being in a de-
coupled form, such as the neo-Hookean incompressible
material model, to impose incompressibility and calcu-
late p [12 and 31].

Consequently, evolution law (12) for the Rajagopal
model (or (13) for the Soares model) and two equilib-
rium relations (15) can be solved to reach the displace-
ment fields uR(R,Z, t) and uZ(R,Z, t) and degradation
parameter d(R,Z, t). Regarding Eq. (20), the material
response to incompressibility p(R,Z, t) depends on the
displacement fields.

4. Standard Galerkin Finite Element
Method (SGFEM) Through FlexPDE
Software

The degradation problem is of a transient one in which
material properties vary during the process in terms
of time and position. This can limit the degradation
analysis in finite element software, for example, in AN-
SYS there are general challenges in the execution of
this problem. First, it is impossible to update element
properties during a transient solution, and the second
is that the evolution equation could not be applied as
an additional governing equation to the fundamental
equations of the element [30 and 31]. Thus, there is
no alternative unless programming in APDL (ANSYS
parametric design language) [30 and 31].

To analyze the defined degradable vessel, this paper
uses FlexPDE commercial software. It allows the user
to apply differential equations to describe the system in
its programming environment in which the script lan-
guage is of a natural type [32]. The governing equations
are solved by SGFEM and the results are presented
as graphs, contours, and data [32].The software does
not have element libraries and the solution is found by
defining the governing equations, and imposing bound-
ary and initial conditions on the computational domain
[32]. Regarding Fig. 5, the solution algorithm of Flex-
PDE according to SGFEM is as follows [31-33]:

1. The weighted-residual statements of all differen-
tial equations are established.

2. The interpolation functions are invoked, and by
integrating over the element, the matrices of
standard Galerkin method are derived.

3. The assembled matrices of the problem are de-
veloped.

4. The final algebraic equations are solved by the
Newton-Raphson method through an implicit
backward difference approach.
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Fig. 5. The solution process in FlexPDE software according to SGFEM.

The components of displacement and degradation
parameter d are considered the degrees of freedom cho-
sen in the finite element procedure. The governing dif-
ferential equations associated with components of dis-
placement and degradation parameter d are defined by
their corresponding equilibrium relations and the evo-
lution law in Eqs. (15) and (12) (or (13)), respectively.

5. Results and Discussions

The main purpose of the present work is to study
some mechanical components of the degradable vessel
but not to discuss which model is more successful in
predicting degradation process of biodegradable stent.
According to the assumed degradation parameters in
section 3.3, the degradation process of stent proceeds
about 1e7 cardiac cycles or about three months.

Fig. 6 compares the degradation parameter of Ra-
jagopal and Soares at the material point initially lo-
cated at the inner radius of 0.3mm (point A) during 1e7
cardiac cycles. A higher level of degradation occurs in
the Rajagopal model than in the Soares model. Owing
to the equality of material properties and the consti-
tutive equations of the two models in the initial state,
different degradation rates are dependent only on the
evolution laws and parameters existing in them. Fig. 7
indicates the degradation rate at point A. As expected,
there is a higher rate of degradation in the Rajagopal
stent than in the Soares stent. A higher rate of degra-
dation results in a greater amount of degradation in
Rajagopal vessel at a given time interval. During the
degradation process, over time, the number of bonds
and subsequently the rate of degradation decreases. In
other words, the ability of body to degrade decreases.
This causes the rate of degradation to reduce, Fig. 7.

Fig. 8 shows degradation at the bottom edge of the
stents calculated in the third month, i.e. at the end
of 1e7 cardiac cycles. It indicates an increase in the
amount of degradation versus the radius of Rajagopal
and Soares vessels. The theory of the two proposed
degradation models is based on the distributed strain
in body. In other words, the higher the deformation,

the higher the level of degradation.

Fig. 6. Degradation evolution at point A in the vessels
during 1e7 cardiac cycles.

Fig. 7. The degradation rates of two vessels at point
A during 1e7 cardiac cycles.
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Fig. 8. Degradation at the bottom edge of vessels
against radius in the third month.

As the evolution equations of two models show, the
strain effect on degradation can be expressed by either
merely the first invariant of C or both the first and
the second invariants of C . The former is related to
the Rajagopal model, whereas the latter is associated
with the Soares model. Therefore, at a given position
of body where the values of these invariants are higher,
degradation is also greater.

For a more comprehensive investigation, at the bot-
tom edge, the first and the second invariants of C ver-
sus the radius of Rajagopal and Soares vessels at the
end of 1e7 cardiac cycles are studied, Fig. 9. An up-
ward trend can be seen in the values of the invariants
from the inner edge to the outer edge. This means
that the deformation is higher at the outer radius of
two degradable polymeric stents because the external
pressure on them is greater than the internal pressure.
The invariants at the material point A versus time dur-
ing 1e7 cardiac periods are also illustrated in Fig. 10.
As can be seen, the invariants grow over time, indicat-
ing a creep-like behavior in the polymer degradation
process. This is due to material softening over time,
which is induced by degradation [16, 17, and 31]. The
increase and decrease in strain tensor in the 2D and
3D models could be measured by invariants of C ; the
more invariants, the more strain. Clearly, the strain in
Rajagopal and Soares degradable vessels increases with
the passage of time.

In order to investigate the effect of degradation on
the vessel stress, the hoop and radial stresses are calcu-
lated at the inner radius of Rajagopal vessel at point A
against twenty cardiac cycles in Fig. 11a and Fig. 11b,
respectively. Due to the fact that the vessel is exposed
to greater pressure in the outer radius than the inner
radius, the two stresses show a negative value. The
absolute value of hoop stress rises during degradation

compared to its initial state because of degradation-
induced material softening. The stress promotion in
the degradable vessels under time-independent applied
pressure can be also found in [31, 34, 35 and 36]. Here,
considering the cyclic pressure on the inner radius of
degradable vessel, which alone leads to the positive
hoop stress, the stress increases with a pulsatile pro-
file like the pressure presented in Fig. 1. According to
the assumed boundary condition (16), the radial stress
due to the pulsatile pressure is negative, so the ra-
dial stress behaves as the convex type of the applied
time-dependent pressure on the vessel, being constant
compared to previous cycles. The maximum error in
predicting the radial stress calculated by SGFEM is
about 2.5%.

Fig. 9. The first and second invariants of C at the bot-
tom edge of vessels against radius in the third month.

Fig. 10. The first and second invariants of C versus
time at point A during 1e7 cardiac cycles.
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Fig. 11. Evolution of the hoop and radial stresses for the Rajagopal vessel at point A during twenty cardiac
cycles in (a) and (b), respectively.

It is worth mentioning that the other quantities,
such as degradation and the deformation invariants,
also evolve pulsationally but are not noticeable in the
presented figures.

6. Conclusions

Two strain-induced bulk degradation models are used
to study the mechanical response of a polymeric
degradable vessel to the loss of mechanical integrity.
The vessel is exposed to pulsatile pressure at the in-
ner radius, constant pressure at the outer radius, and

axial elongation. Evolution equations and their ef-
fects on material properties during the degradation
process tend to cause a time-position-dependent prob-
lem. To solve this, the Standard Galerkin Finite Ele-
ment Method is applied through FlexPDE commercial
software. Given that the vessel is subjected to cyclic
pressure, the stress values promote in a pulsatile form
against time. The creep-like behavior of the degradable
vessel is studied by means of invariants of the defor-
mation tensor. It is shown that the degradation rate is
initially maximum but then decreases due to a reduc-
tion in the number of polymer chains during degrada-
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mer everolimus-eluting stents in patients undergo-
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tion.  Owing  to  higher  pressure  at  outer  radius  of  the
degradable  vessel,  degradation  and  the  first  and  sec-
ond  invariants  of  deformation  tensor  increase  in  terms
of  radius.
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