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Abstract

This paper analyzes the effects of yield stress and nanoparticles transport
on the natural convection of viscoplastic Casson nanofluids. The non-linear
coupled partial differential equations are solved numerically using Buongiorno’s
mathematical model. The governing parameters for the problem are the
Rayleigh number (Ra), yield number (Y ), and thermophoresis and Brownian
motion parameters (Nt&Nb). The effects of these parameters on the fluid
flow, heat and mass transfer, and the shape of yielded and unyielded regions
are examined and discussed in detail. The results demonstrate that the heat
and mass transfer rates increase as the Rayleigh number increases, while the
opposite behaviors are observed with increasing the yield number. The fluid
is difficultly yielded at low Rayleigh number. The heat and mass transfer are
primarily due to conduction at the high values of the yield number. The main
effect of thermophoresis and Brownian motion parameters is on temperature
and concentration distribution in the cavity. These parameters also show
significant impacts on critical heat and mass transfer.

Nomenclature
Bn Bingham number, Eq. (12) C Concentration, dimensionless
Cp Specific heat capacity, kJ kg−1K−1 DB Brownian motion coefficient, m2s−1

DT Thermophoresis parameter, m2s−1 g Acceleration due to gravity, ms−2

H Reference value of length, m L Length of the cavity, m
Le Lewis number, Eq. (15) m Papanastasiou regularization parameter
Nb Brownian motion parameter, Eq. (16) Nr Buoyancy ratio number, Eq. (14)
Nt Thermophoresis parameter, Eq. (17) Nu Local Nusselt number, Eq. (8)
N̄u Average Nusselt number, Eq. (9) p Pressure,dimensionless
p0 Reference value of pressure, Pa Pr Prandtl number, Eq. (10)
Ra Rayleigh number, Eq. (11) Sh Local Sherwood number, Eq. (8)
S̄h Average Sherwood number, Eq. (9) T Temperature of fluid, K
u Velocity component in x direction, dimen-

sionless
v Velocity component in y direction, dimen-

sionless
u0 Reference velocity, ms−1 x, y Cartesian coordinates, dimensionless
Y Yield number, Eq. (13)
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Greek symbols
α Thermal diffusivity of fluid, m2s−1 β Coefficient of thermal expansion, K−1

γ̇ Rate of strain tensor, dimensionless θ Temperature, dimensionless
ν Kinematic viscosity, m2s−1 λ Penalty parameter, dimensionless
µ Palstic viscosity, Pa s ρ Density of fluid, kgm−3

τ Stress tensor, dimensionless τy Yield stress of fluid, dimensionless
Subscripts
C Cold f Fluid
H Hot r Reference value
s Solid particles

because of the important heat transfer application of
the Casson model, special attention has been devoted
to deriving numerical results for this problem, among
them those of Nadeem et al. [20], Hayat et al. [21,
22] and Ibrahim and Makinde [23] who considered the
solution of pure and Nano Casson fluid near the stag-
nation point. Mehmood et al. [24] investigated the
microrotation effects on mixed convection of Casson
fluid induced by a stretching sheet. The effects of ra-
diation on MHD free convection from a cylinder with
partial slip in a Casson fluid in the non-Darcy porous
medium was considered by Makanda et al. [25] and
Raju et al. [26] analyzed MHD heat and mass transfer
of Casson fluid past a stretching surface. An analysis
of a Casson fluid over the oscillating plate was recently
done by Mahanthesh et al. [27]. However, the bulk
of the studies in this area are related to the flow over
a plate or stagnation point. While, to our knowledge,
there is no research dealing with the natural convec-
tion of viscoplastic Casson nanofluid in an enclosure,
analysis of this problem for pure Casson fluid has been
done by some authors [28-30].

The current work aims to provide a comprehensive
solution of the natural convection of Casson nanofluid
in a cavity with emphasis on the role of thermophoresis
and Brownian motion parameters. For this purpose, a
numerical model based on the finite element method
was developed using the Buongiorno [31] mathemati-
cal nanofluid model. To the best of our knowledge, this
problem has not been studied before and the results re-
ported here are new and original.

2. Mathematical Formulation

Fig. 1 shows the schematic diagram and coordinate
system of a two-dimensional square cavity filled with
viscoplastic Casson nanofluids. The left wall is hot
with a high concentration and has a constant temper-
ature and concentration of TH and CH , the right wall
is cold with a low concentration and has a constant
temperature and concentration of TC and CH . The
horizontal boundaries are considered to be adiabatic
and impermeable. The velocity components (i.e., u
for the horizontal component and v for the vertical
one) are zero on the rigid walls of the cavity because

1.  Introduction

Natural  convection  heat  transfer  and  fluid  flow  in  a
cavity  have  been  intensively  investigated  by  many  re-
searchers  during  the  past  decades  because  of  its  fre-
quent  presence  in  nature  and  its  importance  in  many
industrial  applications  such  as  heat  exchangers,  heat
transfer  in  buildings,  cooling  of  electronic  equipment,
etc.  As  a  result,  many  experimental  and  numerical
studies  can  be  found  in  the  literature  dealing  with
such  problems.  During  this  period,  numerous  stud-
ies  have  been  done  on  Newtonian  fluids.  An  extensive
review  has  been  done  by  Ostrach  [1].  In  recent  years,
the  analysis  of  this  problem  for  nanofluids  has  also  at-
tracted  considerable  attention  of  many  researchers  due
to  its  importance.  Nanofluids  are  two-phase  mixtures
composed  of  nanoscale  particles  suspended  in  the  base
fluid  with  low  thermal  conductivity.  The  main  feature
of  nanofluids  is  the  enhancement  of  heat  transfer  de-
rived  from  the  high  thermal  conductivity  of  nanopar-
ticles.  However,  some  disadvantages,  such  as  an  in-
crease  of  viscous  dissipation  can  be  mentioned  in  the
application  of  nanofluids.  These  adverse  effects  are
more  pronounced  for  natural  convection  heat  transfer
[2,  3].  The  study  of  this  problem  for  Newtonian  fluids,
non-Newtonian  power-law  fluids,  and  porous  media  has
been  done  by  many  researchers,  and  a  good  amount  of
work  can  be  found  in  the  literature,  e.g.  [4-10]  .

  Casson  model  was  proposed  by  Casson  [11]  to  de-
scribe  the  flow  of  mixtures  of  pigments  and  oil.  This
model  is  a  type  of  viscoplastic  material.  It  is  used
to  describe  the  behavior  of  many  materials  such  as
blood,  yogurt,  tomato  puree,  molten  chocolate,  etc.
[12].  Viscoplastic  materials  express  a  complex  tran-
sition  between  solid  and  liquid  phases.  The  material
behaves  as  a  solid  for  the  stress  levels  below  the  yield
stress,  and  above  the  yield  stress  it  behaves  as  a  viscous
fluid.  Many  authors  have  extensively  studied  analysis
of  natural  convection  heat  transfer  of  pure  viscoplas-
tic  materials  (see, for instance, Turan et al. [13],  [14],
Aghighi  and  Ammar  [15],  Sairamu  et  al.  [16],  Ma-
soumi  et  al.  [17],  Rafiei  et  al.  [18]  and  Aghighi  et  al.
[19]).  However,  most  of  these  works  werwere  based  on
the  Bingham  model,  which  is  the  simplest  and  most
commonly  used  viscoplastic  model.  In  recent  years,

M.S. Aghighi et al., Effect of Thermophoresis and Brownian Motion on Natural Convection of Yield Stress
Nanofluids : 47–60 48



of no-slip conditions. The effects of particle transport
in suspensions are considered. The density variation is
approximated by the Boussinesq model for both tem-
perature and concentration. By adopting the assump-
tions mentioned above and introducing the character-
istic scales H for length, p0 = (ρfu

2
0) for the pres-

sure, and u0 = (gβH(1 − C ′
r)∆T )1/2 for the velocity,

the non-dimensional governing equations for mass, mo-
mentum, energy, and also conservation of nanoparti-
cles based on Buongiorno’s model [31] can be presented
as:

Fig. 1. Schematic diagram of the physical model and
coordinate system.
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where u, v, θ, C, and p are non-dimensional horizontal
velocity, vertical velocity, temperature, concentration,
and pressure, respectively.

The boundary conditions of velocity in solid walls
can be written as:

u = 0, v = 0 on all walls (2)

The non-dimensional temperature θ and concentra-
tion C are defined by:

θ =
T − Tr

TH − TC

C =
C ′ − C ′

r

C ′
H − C ′

c

(3)

Here Tr and C ′
r are reference temperature and con-

centration: Tr = (TH + TC)/2 and C ′
r = (C ′

H +C ′
c)/2.

Based on the above reference values, the relevant
boundary conditions of temperature and concentration
are given as follows:

∂θ

∂y
= 0,

∂C

∂y
= 0 at y = 0 and y = 1 (4)

θ = 0.5, C = 0.5 at x = 0

θ = −0.5, C = −0.5 at x = 1

The stress-deformation behavior of yield stress Casson
fluid can be written as:

τij =

(
1 +

(
Bn

|γ̇|

) 1
2

)2

γ̇ij if |τ | > τy and

γ̇ = 0 for |τ | < τy

(5)

here, |τ | and |γ̇| are the second invariant of the shear
stress and the rate of strain tensors, respectively. The
component γ̇ij of the rate-of-strain tensor is defined
by:

γ̇ij =
∂ui

∂xj
+

∂uj

∂xi
(6)

and, the rate of strain and stress tensors are given by:

|γ̇| =
√

1

2
γ̇ij γ̇ij and |τ | =

√
1
2τijτij .

The Papanastasiou [32] regularization of the consti-
tutive equation circumvents the discontinuity between
yielded and unyielded regions. Hence, Eq. (5) can be
rewritten as follows:

τij =

(
1 +

(
Bn

|γ̇|

) 1
2

(1− exp(−
√
m|γ̇|)

)2

γ̇ij (7)

In this equation, m is a regularization parameter,
which allows converging to a finite value of the vis-
cosity when γ̇ → 0 and it provides a continuous law
for the stress tensor whatever the values of γ̇ and τ .
Because the Casson model without any regularization
leads to infinite viscosity when γ̇ → 0, the value of m
is usually chosen to be large; in this study, it is set to
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m = 104. For this value of m, the regularized Cas-
son model presents viscosity values close to that of the
non-regularized model.

The local Nusselt and Sherwood numbers are given
as follows:

Nu = −
[
∂θ

∂x

]
x=0

Sh = −
[
∂C

∂x

]
x=0

(8)

and the mean Nusselt N̄u and Sherwood S̄h numbers
are defined as follows:

N̄u = −
∫ 1

0

[
∂θ

∂x

]
x=0

dx

S̄h = −
∫ 1

0

[
∂C

∂x

]
x=0

dx

(9)

The other non-dimensional parameters are defined as:
Prandtl number:

Pr =
µfCp

Kf
(10)

Rayleigh number:

Ra =
gβ(1− C ′

r)∆TH3

αfνf
(11)

Bingham number:

Bn = (Pr/Ra)−
1
2

τy
ρfβg∆TH

= (Pr/Ra)−
1
2Y (12)

Yield number:

Y =
τy

ρfβg∆TH
(13)

Buoyancy ratio number:

Nr =
(ρs − ρf )∆C

ρfβ∆T (1− C ′
r)

(14)

Lewis number:

Le =
αf

DB
(15)

Brownian motion parameter:

Nb =
δDB∆C

αf
(16)

Thermophoresis parameter:

Nt =
δDT∆T

αfTr
(17)

In these equations, Cp, k, and β are the dynamic
viscosity, the specific heat capacity, the thermal con-
ductivity, and the coefficient of thermal expansion, re-
spectively. g is the acceleration due to gravity, α is
the thermal diffusivity, ∆T is the temperature dif-
ference between hot and cold walls and is the kine-
matic viscosity, ∆C ′ is the concentration difference be-
tween hot and cold walls, DB is the Brownian motion
coefficient, DT is the thermophoresis coefficient and
δ
(ρCp)s
(ρCP )f

. Here the subscript f stands for fluid and

subscript s refers to solid particles.

3. Numerical Methodology

3.1. Method of Solution

The coupled partial differential equations (Eq. 1) re-
lated to the two-dimensional laminar natural convec-
tion of viscoplastic Casson nanofluids in a cavity with
differentially heated horizontal walls are discretized by
developing a numerical code based on the weighted
residuals finite element method. The uniform struc-
tured grid is constructed by means of nine node bi-
quadratic elements [33].

The solution is obtained using the numerical
method described in [29]. Here, this method is de-
veloped for heat and mass transfer cases by adding a
concentration equation and considering its effects on
momentum and energy equations. So, because of new
non-linear terms, the initial (previous) values of ve-
locity, temperature, and concentration were imposed
to momentum, energy, and concentration equations to
avoid nonlinearities. The solution was considered con-
vergent when the relative error between the new and
old values of velocity components and temperature and
concentration fields become less than 10−4.

3.2. Numerical Method Validation

A mesh analysis procedure was examined to guarantee
a grid-independent solution of the present study. The
grid independence of the solutions is done for Ra = 106

and Y = 0 (which is the most sensitive case). The re-
sults of velocity and heat and mass transfer for differ-
ent meshes were obtained and compared. Based on the
results, it was found that the mesh consisting of 6561
nodes guarantees a grid-independent solution within
the relative tolerance level of 10−3. Extensive com-
parisons between the present numerical method and
the prior studies for pure Casson fluid are reported in
the recent studies [29-30]. Additionally, the results ob-
tained for natural convection of nanofluids in a cavity
were compared qualitatively with the numerical results
obtained by Sheremet et al. [34] (Fig. 2). Excellent
agreement has been observed for all the results.
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Fig. 2. Validation of the present code results for local Nusselt number Nu and local Sherwood number Sh in
an enclosure with differentially heated side walls (present study and Sheremet study [32]).

4. Results and Discussion

The new extensive results on the natural convection
of Casson nanofluids are presented for several values
of Rayleigh number (103 ≤ Ra ≤ 106), yield number
(0 ≤ Y ≤ Ymax), and thermophoresis and Brownian
motion parameters (0.1 ≤ Nb = Nt ≤ 0.7) at constant
values of the Buoyancy ratio number (Nr = 0.1), Lewis
number (Le = 5), and Prandtl number (Pr = 10). Ef-
forts have been made to analyze the effects of these
parameters on the fluid flow and heat and mass trans-
fer characteristics.

4.1. Effects of Rayleigh Number

The variations of the horizontal component of veloc-
ity, u with Y along the vertical mid-plane (x = 0.5)
and the variations of the vertical component of veloc-
ity, v, temperature, θ, and concentration, C, with Y
along the horizontal mid-plane (y = 0.5) of the cavity
are depicted in Fig. 3 for Ra = 104,105, 106. The re-
sults show that the velocity magnitude increases with
increasing Ra due to stronger convection currents in
the cavity. For the same reason, temperature and con-
centration distributions become more non-linear. Re-
sults show that at high Ra and low yield numbers,
there is a strong concentration gradient close to the
left and right walls, while the concentration remains
uniform in a large area around the center of the cell.
On the other hand, the results for increasing values of
the yield number show reverse behavior due to stronger
viscous resistance, which overcomes the effects of con-
vection. Besides, the linear distributions of tempera-
ture and concentration can be seen at a high enough
yield number, Ymax, which indicates conduction-driven
transport. As Ra increases, the stronger convection
force can overcome the flow resistance up to greater
values of the yield number. Hence, one can see that
the value of Ymax increases with increasing Ra.

The local Nusselt and Sherwood numbers of the hot
left wall have been presented in Fig. 4 for Ra = 104,
106. It is observed that the local Nusselt and Sherwood

numbers increase with increasing Ra. As stated earlier,
it is due to the stronger convective thermal transport
in the cavity. In all cases, the minimum heat and mass
transfer occur at the top corner, where the hot flow
moves away from the hot wall. On the other hand, the
maximum heat and mass transfer can be observed near
the bottom corner at the point where the cold flow is
in contact with the hot wall.

Results show that the heat and mass transfer de-
crease with increasing the yield number, and their
distributions become progressively linear due to the
stronger viscous resistance. The black lines in these
figures present the result of simplifying the energy and
concentration equations on this particular wall when
the yielding number is the maximum value.

The variation of mean Nusselt and Sherwood num-
bers of the hot wall is shown in Fig. 5. The results
are presented for different values of yield and Rayleigh
number. As expected, the heat and mass transfer in-
crease with an increase in Rayleigh number. On the
other hand, as the yield number increases, the amount
of heat and mass transfer decreases uniformly from its
maximum for Newtonian fluid (Y = 0) to the minimum
values at Y = Ymax where the heat and mass transfer is
dominant by conduction (N̄u ≈ N̄uc and S̄h ≈ S̄hc).
Here, subscript c refers to the critical values of N̄u and
S̄h obtained for the conduction-dominated regime. Re-
sults of critical Nusselt number show the deviation of
nanofluid from pure fluid (N̄uc = 1). This is due to the
influence of thermophoresis and Brownian motion on
energy and concentration equations and corresponds
to the nonlinear distribution of temperature and con-
centration at the maximum yield number Y = Ymax

(see Figs. 3 and 8). It is observed that at small yield
numbers, N̄u and S̄h decrease sharply since the vis-
cous effect is strongly improved with increasing of yield
number. The uniform distribution of N̄u and S̄h can
be seen at large values of Y because there is still a weak
convective flow in the cavity that is resistant to yield
stress. In this study, a relative tolerance of 10−3 is used
as the convergence criterion for the Nusselt number.
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The stream functions and contours of temperature,
θ and concentration, C are presented in Fig. 6 for
four different values of yield numbers at Ra = 104.
Fig. 7 depicts similar results for Ra = 106. Clock-
wise circulation of flow in the cavity can be seen due
to the buoyancy effects. Stronger fluid flow, hence the
greater magnitudes of the stream functions and more
curved isotherm and isoconcentration contours can be
observed for higher Rayleigh numbers. On the other
hand, the magnitudes of the stream functions decrease
with an increase in Y , leading to more uniform temper-
ature and concentration distributions. In these figures,
the unyielded (plug) regions are represented by shaded

parts. One can see that these areas increase with in-
creasing Y due to stronger viscous effects. At a high
enough yield number (Y ∼= YC) the unyielded regions
forming a solid plug covers the entire cavity leading to
conductive heat and mass transfer. However, as men-
tioned earlier, there is still a weak convective flow in
the cavity. The results show a high concentration gra-
dient of particles at the left heated surface (S̄hc > 1)
which is accompanied by a weaker thermal gradient
(N̄uc < 1). Conversely, an increase in temperature
gradients can be seen at the cold wall due to the low
concentration.

Fig. 3. Variations of non-dimensional velocity u (along the vertical mid-plane) and non-dimensional velocity
v, temperature θ, and concentration C (along the horizontal mid-plane) with yield number, Y , at Ra = 104

(left), Ra = 105 (midlle) and Ra = 106 (rights) for Nt = Nb = 0.4, Nr = 0.1, Le = 5.
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Fig. 4. Variations of local Nusselt number Nu and local Sherwood number Sh (along the hot wall) with yield
number, Y , at Ra = 104 (top) and Ra = 106 (bottom) for Nt = Nb = 0.4, Nr = 0.1, Le = 5.

Fig. 5. Variations of mean Nusselt number N̄u and mean Sherwood number S̄h with yield number, Y , along
the hot wall at Ra = 103 − 106 forNt = Nb = 0.4, Nr = 0.1, Le = 5.
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Fig. 6. Contours of non-dimensional stream functions, temperature, θ, and Concentration, C, for different
values of yield number, Y , at Ra = 104 for Nt = Nb = 0.4, Nr = 0.1, Le = 5.
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Fig. 7. Contours of non-dimensional stream functions, temperature, θ, and Concentration, C, for different
values of yield number, Y , at at Ra = 106 for Nt = Nb = 0.4, Nr = 0.1, Le = 5.
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Fig. 8. Variations of non-dimensional velocity u (along the vertical mid-plane ) and non-dimensional velocity v,
temperature θ, and concentration C (along the horizontal mid-plane) with yield number, Y , at Nt = Nb = 0.1
(left), and Nt = Nb = 0.7 (right), for Ra = 105, Nr = 0.1, Le = 5.

4.2. Effects of Thermophoresis and Brownian
Motion

The variations of velocity, temperature, and concen-
tration with yield number for (Nt = Nb = 0.1), and
(Nt = Nb = 0.7) at a representative value of nominal
Rayleigh number (Ra = 105) are shown in Fig. 8. Slip
velocity mechanisms of nanoparticles in nanofluids can
be explained by Brownian motion and thermophoresis
parameters. The nanoparticles near the hot wall carry

greater kinetic energy (thermophoretic). On the other
hand, the random and fluctuating motion of particles
increases by increasing the Brownian motion parame-
ter. The opposite phenomenon is observed in the vicin-
ity of the cold wall. Hence, it can be seen from Fig.
8 that the increase in the value of these parameters
leads to non-uniform distribution of temperature and
concentration while no significant change is found in
the flow pattern. The results show that the concentra-
tion gradient increases at the hot wall and decreases
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near the cold border. An opposite behavior can be
observed for temperature distribution while the fluid
velocity and critical yield number are not significantly
affected by Nt and Nb.

Fig. 9 shows the local Nusselt and Sherwood num-
bers for different yield numbers at Nt = Nb = 0.4
(left) and Nt = Nb = 0.7 (right). The mean values of
these quantities are shown in Fig. 10.

Fig. 9. Variations of local Nusselt number Nu and local Sherwood number Sh (along the hot wall) with yield
number, Y , at Nt = Nb = 0.1 (top) and Nt = Nb = 0.7 (bottom), for Ra = 105, Nr = 0.1, Le = 5.

Fig. 10. Variations of mean Nusselt number N̄u and mean Sherwood number S̄h (along the hot wall) with
yield number, Y , at Nt = Nb = 0.1 (top) and Nt = Nb = 0.7 (bottom), for Ra = 105, Nr = 0.1, Le = 5.
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Fig. 11. Contours of non-dimensional stream functions, temperature, θ, and Concentration, C, for different
values of Brownian motion and thermophoresis, Nt and Nb, at Ra = 105 and Y = 0.008 for Nr = 0.1, Le = 5.

As mentioned before, as the Brownian motion and
thermophoresis increase, the concentration gradient on
the hot wall increases while the thermal gradient de-
creases. Hence, in accordance with the temperature
and concentration profiles enforced at the hot wall, it
can be seen that the Nusselt number decreases with
increasing values of Nt and Nb while the Sherwood
number increases. It is worth mentioning here that
thermophoresis and Brownian motion parameters also
have significant impacts on N̄uc and S̄hc. However, in
all cases, heat and mass transfer decrease with increas-
ing the yield number due to the stabilizing influence of
the fluid yield stress. Increasing the values of Brownian
motion and thermophoresis parameters cause nanopar-

ticles to accumulate in the hot wall, which is accompa-
nied by the enlarged isothermal zone (Fig. 11). How-
ever, no significant changes are seen in stream func-
tions. Results show that the plug regions grow in the
upper- left area of the cavity, where the higher gradi-
ents of nanoparticles can be seen.

5. Conclusions

In this work, the natural convection of viscoplastic
Casson nanofluids has been studied numerically in a
square enclosure using Buongiorno’s model. The sys-
tem of nonlinear differential equations has been solved
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numerically  using  Galerkin  finite  element  method.
  The  Casson  model,  as  part  of  viscoplastic  materi-
als,  provides  a  link  between  solid  and  fluid  behavior.  In
fact,  they  represent  solids  with  low  yield  stresses  which
can  flow  like  a  fluid  at  the  greater  applied  stress.  There-
fore,  the  most  important  parameter  in  analyzing  their
behavior  is  yield  stress.  Our  study  showed  that  the
combined  effect  of  yield  stress  and  nanoparticles  prop-
erties  strongly  affects  the  performance  of  these  mate-
rials  and  their  conversion  from  liquid  to  solid  and  vice
versa.  Actually,  the  increase  in  the  yield  stress  leads
to  reduced  heat  and  mass  transfer  and  as  a  result,  it
causes  the  fluid  to  solidify.

  The  study  of  the  effects  of  thermophoresis  and
Brownian  motion  parameters  on  yield  stress  nanofluid
shows  that  these  parameters  have  a  more  pronounced
effect  on  the  heat  and  mass  transfer  than  it  does  on
the  fluid  flow.  The  main  impact  of  these  parameters
was  observed  in  the  non-uniform  distribution  of  tem-
perature  and  concentration.  It  can  be  seen  that  the
concentration  gradient  increases  at  the  hot  wall  and
decreases  near  the  cold  wall.  An  opposite  behavior  can
be  observed  for  temperature  distribution.  These  pa-
rameters  also  have  significant  impacts  on  (  N̄  uc)  and
(  S̄hc).  A  detailed  examination  of  the  results  reveals
the  effect  of  thermophoresis  and  Brownian  motion  pa-
rameters  on  the  distribution  of  unyielded  areas  in  such
a  way  that  unyielded  regions  increase  with  increasing
N  t  and  N  b.
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