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Abstract

The fully classical coupled thermoelasticity problem in a thick hollow cylinder
is solved using analytical methods. Finite Hankel transform, Laplace transform
and a contemporary innovative method are used to solve the problem and
presenting closed-form relations for temperature and stress distribution. To
solve the energy equation and the structural equation, on the inner and
the outer surfaces of the cylinder, time-dependent thermal and mechanical
boundary conditions are applied. The Dirichlet boundary condition which
represents temperature, is considered to solve the energy equation and the
Cauchy boundary condition which represents traction, is considered for the
equation of motion. Two cases are studied numerically, pure mechanical load
and pure thermal load. In plotting the results for the case of prescribing pure
mechanical load in spite of not applying any thermal load induced temperature
can be seen in the temperature history figure. Due to solving the elastodynamic
problem, the elastic and the thermoelastic stress wave propagation into the
medium and the reflection were observed in the plotted results.

Nomenclature
a Inner radius b Outer radius
c Specific heat α Thermal expansion coefficient
k Thermal conductivity ρ Density
E Modulus of elasticity v Poisson’s ratio
θ Temperature u Displacement
t Time T0 Reference temperature
σrr Radial stress σθθ Hoop stress
H Hankel transform P Applied pressure on the inner surface
t∗ Time of reaching dilatation wave to a specific Ve Velocity of the wave

radial position θ0 Applied temperature on the inner surface

1. Introduction

A large number of mechanical elements are affected
by thermal loads and in some cases these loads are

large enough to cause structural failure. Due to this
widespread applications, classical and generalized the-
ories of thermoelasticity are developed. The equa-
tions of thermoelasticity are coupled, i.e., a change
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in the temperature field produces a strain and mutu-
ally time-dependent deformation leads to the change
in the temperature field. The equations of the cou-
pled classical thermoelasticity theory are very compli-
cated due to thermo-mechanical coupling terms that
exist between displacement and temperature compo-
nents. Therefore structural equation and energy equa-
tion must be solved simultaneously. Due to this com-
plexity, analytical solutions have not been extended
widely. Analytical solution of quasi-static and dynamic
uncoupled thermoelasticity problem in a thick sphere
presented by Shahani and Momeni Bashusqeh [1] in
2014. They [2] also solved the coupled classical ther-
moelasticity problem in a thick sphere in 2013. Sha-
hani and Nabavi [3] solved quasi-static classical ther-
moelasticity problem in a thick hollow cylinder. They
used finite Hankel transform to solve the energy equa-
tion. Thermal boundary conditions are considered to
be time-dependent and two different cases of mechan-
ical boundary conditions are investigated. They also
established one to one relations between tractions and
displacement on the boundaries. Yun et al. [4] ob-
tained thermal stress distribution in a thick cylinder
subjected to thermal shock. They used Dirac func-
tion to model boundary condition of thermal shock and
Laplace transform to solve uncoupled heat conduction
equation. The problem is considered to be quasi-static.

Raoofian Naeeni et al. [5] presented analytical solu-
tion for coupled thermoelastic transient waves in a half-
space made of transversely isotropic material. They
used a new potential function to uncouple the equa-
tion of motion and the heat conduction equation and
then solved the problem using Hankel and Laplace
transforms. Liang et al. [6] proposed an asymptotic
method for solving transient thermal shock in isotropic
medium with temperature dependent properties. They
solved the system of equations using integral trans-
form method. A sudden temperature rise is applied
as boundary condition.

Wang [7] studied hollow cylinder which is subjected
to rapid arbitrary heating. A uniform temperature is
considered in the entire hollow cylinder which makes
the problem uncoupled. The finite Hankel transform is
used to obtain displacement field. Cho et al. [8] used
Hankel transform and Laplace transform to obtain dy-
namic thermal stress distribution in a thick-walled or-
thotropic cylinder. The energy equation is not solved
and a constant temperature distribution is considered
to obtain stress components. Ding et al. [9] solved dy-
namic plane strain thermoelasticity problem for a non-
homogeneous orthotropic cylindrical shell using the or-
thogonal expansion technique. Zhou et al. [10] studied
dynamic thermal stresses in a short thick-walled or-
thotropic tube based on high order shell theory. Cubic
and quadratic forms are considered for axial and radial
displacements and the equation of motion is solved us-
ing precise integration method.

Vel [11] used power series technique to present a so-
lution for three-dimensional thermoelasticity problem
of a functionally graded long hollow cylinder. The ma-
terial properties are considered to be cylindrically mon-
oclinic and temperature dependent. An axial force and
torque are applied on the cylinder as well as prescribing
loads on the surfaces.

Marin [12] developed the domain of influence theo-
rem to investigate the thermoelasticity of bodies with
voids. In this work it is proved that for a finite time,
temperature and displacement fields do not create dis-
turbance outside the bounded domain. Rychahivskyy
and Tokovyy [13] used direct integration method to
solve elasticity and thermoelasticity equations in a
semi-plane for different types of boundary conditions.

Shahani and Sharifi Torki [14] solved dynamic clas-
sical thermoelasticity problem in an isotropic thick hol-
low cylinder. The strain rate term in the heat conduc-
tion equation is ignored to make the equations of ther-
moelasticity uncoupled. The inner and the outer sur-
faces of the cylinder are subjected to time-dependent
thermal and mechanical loadings. They also [15] stud-
ied thermoelastic wave propagation in an orthotropic
thick hollow cylinder. They used classical uncoupled
theory of thermoelasticity and considered the problem
to be dynamic. An exponentially decaying tempera-
ture is prescribed on the inner surface and then propa-
gation and reflection of thermal stress wave are studied
for two different types of mechanical boundary condi-
tions. Tarn [16] presented exact solutions for tempera-
ture distribution, thermal stresses and deformations in
an anisotropic hollow and solid cylinders. The uncou-
pled theory of thermoelasticity is used and the material
properties are considered to be radial dependent.

Itu et al. [17] proposed a mathematical model to
increase the stiffness of composite plates. They used fi-
nite element method to perform static and modal anal-
ysis and verified the results by the experimental tests.
Lata and Kaur [18] studied deformation of a homo-
geneous transversely isotropic circular plate subjected
to thermomechanical loadings. The lateral surfaces of
the plate are considered to be traction free. They also
investigated the effects of two temperature thermoe-
lasticity on the deformation of the plate.

Valse et al. [19] presented a theoretical background
to study dynamic of multi body systems using finite el-
ement methods. They used Lagrange’s equations and
considered the one-dimensional elastic elements to an-
alyze the problem of general three-dimensional motion.

Mishra et al. [20] presented closed-form solution
for the forced vibration of non-homogenous isotropic
thin annular disk subjected to dynamic pressure. Lord-
Shulman theory and Laplace transform are used to
solve the problem. Thermal and mechanical properties
of the material vary according to power law distribu-
tion in radial coordinate. Sharma et al. [21] derived
the relations and equations for non-local thermoelastic
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solid with diffusion. They also studied the free vibra-
tion of diffusive hollow cylinder using generalized the-
ory of thermoelasticity. To transform the governing
equations to ordinary differential equations the vibra-
tion of the cylinder is considered to be time harmonic.
Abbas [22] used eigenvalue method to obtain analyti-
cal solution for free vibration of thermoelastic hollow
sphere. For the mechanical boundary conditions both
the inner and the outer surfaces of the sphere are con-
sidered to be stress free. A constant temperature is
applied as thermal boundary condition and generalized
theory of thermoelasticity with one relaxation time is
used to solve the problem.

In this paper fully coupled classical thermoelastic-
ity problem in a thick hollow cylinder is solved analyti-
cally using transformation methods and closed-form re-
lations are presented for the temperature field and the
distribution of the stress components. An outstand-
ing difference between this work and previous papers
such as [14] and [15] is the use of coupled theory of
thermoelasticity. To show the effect of the thermo-
mechanical coupling, two different load cases are inves-
tigated; pure mechanical load and pure thermal load.
In the pure mechanical load case an induced temper-
ature gradient can be seen in the figures which is the
direct impact of the coupling term. Existence of this
thermo-mechanical coupling, the strain rate term in
the energy equation, increases the precision of the re-
sults but makes the problem complicated and the ther-
moelasticity equations should be solved concurrently.
To validate the presented solution and the results, the
problem of a hollow cylinder subjected to the uniform
and constant temperature distribution is solved and
the results are compared with those presented by Ding
et al. [9] which shows good agreement.

2. Formulation

Consider a long hollow circular cylinder made of homo-
geneous isotropic material with inner and outer radii a
and b, respectively. The geometry is shown in Fig. 1.

Fig. 1. Schematic geometry of the problem.

Due to symmetry, the equations of the coupled
thermoelasticity in cylindrical coordinates reduce to

[23]:

∂2θ

∂r2
+

1

r

∂θ

∂r
− 1

α∗
∂θ

∂t
=

EαT0

k(1− 2v)

(
∂u̇

∂r
+

u̇

r

)
(1a)

∂2u

∂r2
+

1

r

∂u

∂r
− 1

r2
u− γ2ü = β

∂θ

∂r
(1b)

where:

γ2 =
ρ

E

(1 + v)(1− 2v)

(1− v)
(2a)

β = α
(1 + v)

(1− v)
(2b)

α∗ =
k

ρc
(2c)

in which ρ, v and E are the density, the Poisson’s ratio
the modulus of elasticity respectively. Also α is the
thermal expansion coefficient, k coefficient of the ther-
mal conduction and c the specific heat. On the other
hand, we have:

θ = T (r, t)− T0 (3a)

u = u(r, t) (3b)

where T0 is the reference temperature at which the
cylinder is stress free. The right-hand side of Eq. (1a)
which is the strain rate, is the thermo-mechanical cou-
pling term. This term and the right-hand side of Eq.
(1b) cause the reciprocal interactions of temperature
and displacement fields. The stress components are σrr

and σθθ which include mechanical and thermal parts
[23]:

σrr =
E

(1 + v)(1− 2v)

[
(1− v)

∂u

∂r
+ v

u

r

]

− Eα

(1− 2v)
θ (4a)

σθθ =
E

(1 + v)(1− 2v)

[
v
∂u

∂r
+ (1− v)

u

r

]

− Eα

(1− 2v)
θ (4b)

On the inner and the outer surfaces of the cylinder
thermal boundary conditions are applied as follows:

θ(a, t) = f(t) (5a)

θ(b, t) = g(t) (5b)

where f(t) and g(t) are known time-dependent func-
tions. The initial condition temperature of the cylinder
is considered to be radial dependent:

θ(r, 0) = F1(r) (6)
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Time-dependent traction boundary conditions are ap-
plied on the inner and the outer surfaces of the cylin-
der:

σrr(a, t) = P1(t) (7a)

σrr(b, t) = P2(t) (7b)

By substituting (7a) and (7b) in (4a) we have:

∂u

∂r

∣∣∣∣
r=a

+ h1u(a, t) = B1(t) (8a)

∂u

∂r

∣∣∣∣
r=b

+ h2u(b, t) = B2(t) (8b)

where:

h1 =
v

(1− v)a
(9a)

h2 =
v

(1− v)b
(9b)

B1(t) = − (1 + v)(1− 2v)

E(1− v)
P1(t) +

(1 + v)α

(1− v)
f(t) (9c)

B2(t) = − (1 + v)(1− 2v)

E(1− v)
P2(t) +

(1 + v)α

(1− v)
g(t) (9d)

The initial conditions for the structural equation are:

u(r, 0) = F2(r) (10a)

u̇(r, 0) = F3(r) (10b)

where F2(r) and F3(r) are known radial dependent
functions and a dot over the quantity is the partial
derivative of the function with respect to time.

3. The Method of Solution

To solve the coupled thermoelasticity equations θ(r, t)
and u(r, t) are resolved into two parts:

u(r, t) = u1(r, t) + u2(r, t) (11a)

θ(r, t) = θ1(r, t) + θ2(r, t) (11b)

Applying Eq. (11b) to Eq. (1a) and its boundary and
initial conditions, Eq. (5) and Eq. (6), results in sepa-
rating the heat conduction equation into two boundary
value problems:

∂2θ1
∂r2

+
1

r

∂θ1
∂r

− 1

α∗
∂θ1
∂t

= 0 (12a)

θ1(a, t) = f(t) (12b)

θ1(b, t) = g(t) (12c)

θ1(r, 0) = 0 (12d)

and

∂2θ2
∂r2

+
1

r

∂θ2
∂r

− 1

α∗
∂θ2
∂t

=
EαT0

k(1− 2v)

(
∂u̇

∂r
+

u̇

r

)
(13a)

θ2(a, t) = f(t) (13b)

θ2(b, t) = g(t) (13c)

θ2(r, 0) = 0 (13d)

In the same way by applying the Eq. (11a) to Eqs.
(1b), (8) and (10), the structural problem can be re-
solved into the following equations:

∂2u1

∂r2
+

1

r

∂u1

∂r
− 1

r2
u1 − γ2ü1 = 0 (14a)

∂u1

∂r

∣∣∣∣
r=a

+ h1u1(a, t) = B1(t) (14b)

∂u1

∂r

∣∣∣∣
r=b

+ h2u1(b, t) = B2(t) (14c)

u1(r, 0) = 0 (14d)
u̇1(r, 0) = 0 (14e)

and

∂2u2

∂r2
+

1

r

∂u2

∂r
− 1

r2
u2 − γ2ü2 = β

∂θ

∂r
(15a)

∂u2

∂r

∣∣∣∣
r=a

+ h1u2(a, t) = 0 (15b)

∂u2

∂r

∣∣∣∣
r=b

+ h2u2(b, t) = 0 (15c)

u2(r, 0) = F2(r) (15d)
u̇2(r, 0) = F3(r) (15e)

The solutions of Eqs. (12) and (14) can be accom-
plished applying the finite Hankel transform defined as
[24]:

H[θ1(r, t); ζn] = θ̄1(ζn, t)

=

∫ b

a

rθ1(r, t)K1(ζn, r)dr (16a)

H[u1(r, t); ξm] = ū1(ξm, t)

=

∫ b

a

ru1(r, t)K2(ξm, r)dr (16b)

where K1(ζn, r) and K2(ξm, r) are the kernels of the
transformation. Choosing the appropriate kernel for
transformation is dependent on the equations and the
related boundary conditions. The kernels of transfor-

H. Sharifi Torki and A.R. Shahani, Analytical Solution of the Coupled Dynamic Thermoelasticity Problem in
a Hollow Cylinder: 121–134 124



mations for the present problem are as follows [25]:

K1(r, ζn) = J0(ζnr)Y0(ζna)− J0(ζna)Y0(ζnr) (17a)

K2(r, ξm) = {J1(ξmr)[ξmY ′
1(ξma) + h1Y1(ξma)]

− Y1(ξmr)[ξmJ ′
1(ξma) + h1J1(ξma)]}1 (17b)

where ζn and ξm are the positive roots of the following
characteristics equations:

J0(ζnb)Y0(ζna)− J0(ζna)Y0(ζnb) = 0 (18a)

[ξmY ′
1(ξma+ h1Y1(ξma)][ξmJ ′

1(ξmb) + h2J1(ξmb)]

− [ξmY ′
1(ξmb) + h2Y1(ξmb)]

× [ξmJ ′
1(ξma) + h1J1(ξma)] = 0 (18b)

The inverse transforms are defined as [25]:

H−1[θ̄1(ζn, t); r] = θ1(r, t)

=
∞∑

n=1

anθ̄1(ζn, t)K1(r, ζn) (19a)

H−1[ū1(ξm, t); r] = u1(r, t)

=

∞∑
m=1

bmū1(ξm, t)K2(r, ξm) (19b)

where:

an =
1∫ b

a

rK2
1 (r, ζn)dr

=
π2

2

ζ2n{J0(ζnb)}2

{J0(ζna)}2 − {J0(ζnb)}2
(20a)

bm =
1∫ b

a

rK2
2 (r, ξm)dr

=
π2ξ2me22

2{(h2
2 + ξ2m[1−

(
1

ξmb

)2
])e21 − (h2

1 + ξ2m[1−
(

1
ξma

)2
])e22}

(20b)

in which

e1 = ξmJ ′
1(ξma) + h1J1(ξma) (21a)

e2 = ξmJ ′
1(ξmb) + h2J1(ξmb) (21b)

Applying the finite Hankel transform to the Eqs. (12)
and (14), yields:

∂θ̄1
∂t

+ α∗ζ2nθ̄1(ζn, t)

= α∗
[
2J0(ζna)

πJ0(ζnb)
g(t)− 2

π
f(t)

]
= A1(t) (22a)

∂2ū1(ξm, t)

∂t2
+

(
ξm
γ

)
ū1(ξm, t)

=
1

γ2

[
2e1
πe2

B2(t)−
2

π
B1(t)

]
= A2(t) (22b)

Eqs. (22a) and (22b) are non-homogeneous ordinary
differential equations, the solution of which can be eas-
ily obtained as follows:

θ̄1(ζn, t) =

∫ t

0

A1(τ)e
−α∗ζ2

n(t−τ)dτ (23a)

ū1(ξm, t) =
γ

ξm

∫ t

0

A2(τ) sin

(
ξm
γ

(t− τ)

)
dτ (23b)

Using the inversion relations, Eqs. (18a) and (18b), we
have:

θ1(r, t) =
∞∑

n=1

anK1(r, ζn)

∫ t

0

A1(τ)e
−α∗ζ2n(t−τ)dτ (24a)

u1(r, t) =
∞∑

m=1

γ

ξm
bmK2(r, ξm)

∫ t

0

A2(τ) sin

(
ξm
γ

(t− τ)

)
dτ (24b)

As is seen the first set of the equations were solved.
To solve the second set of the equations, θ2(r, t) and
u2(r, t) can be considered as the following form [2]:

θ2(r, t) = Q(t)K1(r, ζn) (25a)

u2(r, t) = S(t)K2(r, ξm) (25b)
where Q(t) and S(t) are unknown functions of time. It
should be emphasized that the above forms for θ2(r, t)
and u2(r, t) satisfy the related boundary conditions.
Substituting Eqs. (19a), (19b), (25a) and (25b) into
(13a) and (15a) yields:

(Q̇+ α∗ζ2nQ)K1(r, ζn) = − EαT0

ρc(1− 2v)
(bm ˙̄u1

+ Ṡ)

(
∂K2(r, ξm)

∂r
+

K2(r, ξm)

r

)
(26a)(

S̈ +

(
ξm
γ

)2

S

)
K2(r, ξm) =

− β

γ2
(anθ̄1 +Q)

∂K1(r, ζn)

∂r
(26b)

Using the orthogonality of the Bessel functions, the
following equations can be obtained [24]:∫ b

a

rK1(r, ζn)K1(r, ζp)dr = Nnδnp (27a)

∫ b

a

rK2(r, ξm)K2(r, ξp)dr = Mmδmp (27b)

where δ is the Kronecker delta and:

Nn =
π2

2

ζ2n{J0(ζnb)}2

{J0(ζna)}2 − {J0(ζnb)}2
(28a)
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Mm =
1

ξ2m

{
b2
dK2

dr

∣∣∣∣2
r=b

− a2
dK2

dr

∣∣∣∣2
r=a

+ (ξ2m − 1)[b2K2
2 (b)− a2K2

2 (a)]

}
(28b)

Multiplying Eq. (26a) by rK1(r, ζn) and Eq. (26b)
by rK2(r, ξm), integrating between a and b, and then
using the orthogonality relations result in:

Q̇+ α∗ζ2nQ =

−
EαT0

∫ b

a

rK1(r, ζn)

(
∂K2(r, ξm)

∂r
+

K2(r, ξm)

r

)
dr

ρc(1− 2v)Nn

 (bm ˙̄u1 + Ṡ) (29a)

S̈ +

(
ξm
γ

)2

S =

−
β

∫ b

a

rK2(r, ξm)
∂K1(r, ζn)

∂r
dr

γ2Mm

 (anθ̄1 +Q) (29b)

To simplify the above equations we introduce the
following parameters:

U1 =

−
EαT0

∫ b

a

rK1(r, ζn)

(
∂K2(r, ξm)

∂r
+

K2(r, ξm)

r

)
dr

ρc(1− 2v)Nn


(30a)

U2 =

−
β

∫ b

a

rK2(r, ξm)
∂K1(r, ζn)

∂r
dr

γ2Mm

 (30b)

Now Eqs. (29a) and (29b) can be written in the sim-
plified form:

Q̇+ α∗ζ2nQ = U1(bm ˙̄u1 + Ṡ) (31a)

S̈ +

(
ξm
γ

)2

S = U2(anθ̄2 +Q) (31b)

The proper form of the initial conditions can be
obtained by substituting Eq. (13d) into (25a):

Q(0)K1(r, ζn) = F1(r) (32)

Using the orthogonality relation (27a) leads to:

Q(0) =

∫ b

a
rK1(r, ζn)F1(r)dr

Nn
(33)

The initial conditions for S(t) can be acquired in
an identical procedure:

S(0) =

∫ a

b

rK2(r, ξm)F2(r)dr

Mm
(34a)

Ṡ(0) =

∫ b

a
rK2(r, ξm)F3(r)dr

Mm
(34b)

It can be that Eqs. (31a) and (31b) are coupled. These
coupled equations can be uncoupled by some mathe-
matical operations. By differentiating Eqs. (31a) and

(31b) with respect to time we have:

...
Q + α∗ζ2nQ̈ = U1(bm

...
ū 1 +

...
S ) (35a)

...
S +

(
ξm
γ

)2

Ṡ = U2(an
˙̄θ1 + Q̇) (35b)

Substituting Q̇ from Eq. (31a) in the Eq. (35b) leads
to:

...
S +

(
ξm
γ

)2

Ṡ = U2[an
˙̄θ1 + U1(bm ˙̄u1

+ Ṡ)− α∗ζ2nQ]

(36)

Now by substituting Q from Eq. (31b) into Eq. (36)
we have:

...
S +

(
ξm
γ

)2

Ṡ = U2

[
an

˙̄θ1 + U1(bm ˙̄u1 + Ṡ)

− α∗ζ2n

(
1

U2
(S̈ +

(
ξm
γ

)2

S)− anθ̄1

)]
(37)

As is seen Eq. (37) is independent of Q. Substituting...
S from Eq. (35b) into Eq. (35a) leads to:

...
Q + α∗ζ2nQ̈ = U1[bm ¨̄u1 + U2(an

˙̄θ1 + Q̇)−
(
ξm
γ

)2

Ṡ]

(38)
Now by substituting Ṡ from Eq. (31a) into Eq. (38)
we have:

...
Q + α∗ζ2nQ̈ = U1

[
bm ¨̄u1 + U2(an

˙̄θ1 + Q̇)

−
(
ξm
γ

)2(
1

U1
(Q̇+ α∗ζ2nQ)− bm ˙̄u1

)] (39)
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Now by ordering Eqs. (37) and (39) Q(t) and S(t) can
be obtained in the following form:

d3S

dt3
+ α∗ζ2n

d2S

dt2
+

((
ξm
γ

)2

− U1U2

)
dS

dt

+ α∗ζ2n

(
ξm
γ

)2

S

= bmU1U2 ˙̄u1 + anU2(
˙̄θ1 + α∗ζ2nθ̄1) (40a)

d3Q

dt3
+ α∗ζ2n

d2Q

dt2
+

((
ξm
γ

)2

− U1U2

)
dQ

dt

+ α∗ζ2n

(
ξm
γ

)2

Q

= bmU1
d

dt

(
¨̄u1 +

(
ξm
γ

)2

ū1

)
+ anU1U2

˙̄θ1 (40b)

Eqs. (40a) and (40b) are ordinary differential equa-
tions. Substituting Eqs. (22a) and (22b) into Eqs.
(40a) and (40b) results in:

d3S

dt3
+ α∗ζ2n

d2S

dt2
+

[(
ξm
γ

)2

− U1U2

]
dS

dt

+ α∗ζ2n

(
ξm
γ

)2

S = U2[bmU1 ˙̄u1 + anA1(t)] (41a)

d3Q

dt3
+ α∗ζ2n

d2Q

dt2
+

[(
ξm
γ

)2

− U1U2

]
dQ

dt

+ α∗ζ2n

(
ξm
γ

)2

Q = U2[bmȦ2(t) + anU2
˙̄θ1] (41b)

Q(t, ξm) and S(t, ζn) can be acquired by solving Eqs.
(41a) and (41b). The solutions of the Eqs. (41a)
and (41b), depend on the mechanical and the ther-
mal boundary conditions, thus Q(t, ξm) and S(t, ξn)
are presented in the numerical examples section. Then,
the solutions for both parts of θ(r, t) and u(r, t) are ob-
tained and the closed-form relations for the tempera-
ture distribution and the displacement are:

θ(r, t) =
∞∑

n=1

anθ̄1(t)K1(r, ζn)

+
∞∑

m=1

∞∑
n=1

Q(t, ξm)K1(r, ζn) (42a)

u(r, t) =

∞∑
m=1

bmū1(t)K2(r, ξm)

+
∞∑

m=1

∞∑
n=1

S(t, ζn)K2(r, ξm) (42b)

4. Numerical Examples

In order to study the response of the cylinder under
external loads, two numerical examples are considered.
The material properties of Aluminum are employed in
the calculations [26]:

a = 1m; b = 2m; P = 100MPa; v = 0.3; θ0 = 100

E = 70GPa; ρ = 2707kg/m
3
; k = 204W/mK

α = 23E − 6 1/K; c = 903J/kgK; T0 = 29K

4.1. Pure Mechanical Load

In the case when only a constant mechanical load is
applied on the inner surface of the cylinder and the
outer surface is traction free, thermal and mechanical
boundary conditions of the problem are:

θ(a, t) = 0 (43a)

θ(b, t) = 0 (43b)

σrr(a, t) = −P (43c)

σrr(b, t) = 0 (43d)

Also the thermal and mechanical initial conditions are:

θ(r, 0) = 0 (44a)

u(r, 0) = 0 (44b)

u̇(r, 0) = 0 (44c)

Thus we have:

Q(0) = 0 (45a)

S(0) = 0 (45b)

Ṡ(0) = 0 (45c)

Using Eq. (22a) and the thermal boundary conditions,
there is:

A1(t) = 0 (46a)

θ̄1(ζn, t) = 0 (46b)

Using the mechanical boundary conditions and Eqs.
(9c) and (9d) we have:

B1 = −P (1 + v)(1− 2v)

E(1− v)
(47a)

B2 = 0 (47b)

A2(t) =
2P (1 + v)(1− 2v)

πγ2E(1− v)
(47c)
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Substituting Eq. (46a) into (23b) gives:

ū1(ξm, t) =
2P (1 + v)(1− 2v)

πξ2mE(1− v)

(
1− cos

(
ξm
γ

t

))
(48)

Substituting Eqs. (45b) and (47b) into Eqs. (24a) and
(24b) gives:

θ1(r, t)− 0 (49a)

u1(r, t) =
2P (1 + v)(1− 2v)

πE(1− v)

∞∑
m=1

bm
ξ2m

(
1− cos

(
ξm
γ

t

))
K2(r, ξm) (49b)

Using Eqs. (41a) and (41b) we have:

d3S

dt3
+ α∗ζ2n

d2S

dt2
+

((
ξm
γ

)2

− U1U2

)
dS

dt

+ α∗ζ2n

(
ξm
γ

)2

S = R sin

(
ξm
γ

t

)
(50a)

where:

R =
2bmU1U2P (1 + v)(1− 2v)

πE(1− v)ξmγ
(51)

Solving Eqs. (49a) and (49b) results in:

S(t) =
Rγ

ξmU1U2
cos

(
ξm
γ

t

)
+

3∑
i=1

cie
αit (52a)

Q(t) =
1

U2

3∑
i=1

(
α2
i +

(
ξm
γ

)2
)
cie

αit (52b)

where αi’s are the roots of the following equation:

x3 + α∗ζ2nx
2 +

((
ξm
γ

)2

− U1U2

)
x

+ α∗ζ2n

(
ξm
γ

)2

= 0

(53)

It should be mentioned that Q(t) is obtained by using
Eq. (31b). The constants ci’s can be acquired using
Eqs. (45a) to (45c).


c1

c2

c3


=


1 1 1

α1 α2 α3

α2
1 +

(
ξm
γ

)2

α2
2 +

(
ξm
γ

)2

α2
3 +

(
ξm
γ

)2




− Rγ

ξmU1U2

0

0


(54)

Eq. (53) is a cubic equation and has three roots,
one of which is real negative and the two others are
complex conjugate with negative real part. Because
of the negative power of these exponential terms, they
vanish over time passing. Figs. 2 and 3 present the
history of dynamic radial and hoop stresses.

As it is seen, dilatation wave which initiated at the
inner surface moves forward from the inner surface and
after colliding outer surface reflects into the medium in
the opposite direction. Due to the traction free bound-
ary condition of the outer surface, the propagated wave
becomes reversed after collision by outer surface. As it
is observed from figures stress wave magnitude became
smaller after reflecting inward the medium.

Indeed, compressive radial stress wave produces
tensile hoop stress. But as is seen at the initial mo-
ments when the compressive stress wave reaches differ-
ent radial positions, tangential stress component be-
comes compressive and then rises progressively with
time. This occurs due to the resistance of the nearby
points in the medium which exerts to any point.

Fig. 2. History of dynamic radial stress for different radial positions (case i).
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Fig. 3. History of dynamic hoop stress for different radial positions (case i).

As is mentioned, coupled classical theory of ther-
moelasticity is used to solve the problem. Due to ex-
istence of strain rate terms in the energy equation, a
change in the amount of strain can produce a tempera-
ture change. In this example, there is not any thermal
load applied to the cylinder, but because of the cou-
pling term a change in temperature is observed. Fig. 4
shows this temperature difference with respect to the
reference temperature.

Figs. 5 and 6 show through-thickness variation of
hoop and radial stresses. Velocity of the propagated
wave into the cylinder is the reverse square root of the
factor of the second derivative of displacement with re-
spect to the time in the equation of motion and can be
acquired using the following equation:

Ve =
1

γ
=

√
E(1− v)

ρ(1 + v)(1− 2v)
= 5.9× 103(m/s) (55)

Fig. 4. History of temperature for different radial positions (case i).

Fig. 5. Through-thickness variation of dynamic radial stress (case i).
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Fig. 6. Through-thickness variation of dynamic hoop stress (case i).

Using Eq. (55) the first time can be calculated
when dilatation wave reaches each radial position. For
example:

t∗ =
r − a

Ve
=

1.2− 1

5.9× 103
= 0.33898× 10−4(sec) (56)

It is seen from the Figs. 5 and 6 that at the same time
as computed in Eq. (56), the stress wave has reached
the radial position r = 1.2.

As is mentioned due to resistance exerted to any
point by medium, tangential component becomes com-
pressive at the initial moments and then proceeds from
negative to positive. This reality is obviously shown in
the Fig. 6.

4.2. Pure Thermal Load

In this case a constant temperature is applied on the
inner surface of the cylinder. So the boundary condi-
tions of the problem are:

θ(a, t) = θ0 (57a)
θ(b, t) = 0 (57b)
σrr(a, t) = 0 (57c)
σrr(b, t) = 0 (57d)

The thermal and mechanical initial conditions are:

θ(r, 0) = 0 (58a)
u(r, 0) = 0 (58b)
u̇(r, 0) = 0 (58c)

Thus we have:

Q(0) = 0 (59a)
S(0) = 0 (59b)

Ṡ(0) = 0 (59c)

Using the thermal boundary conditions, Eqs. (57a)
and (57b), and Eqs. (22a) and (22b) together with

Eqs. (9c) and (9d), we have:

A1(t) = −2α∗θ0
π

(60a)

A2(t) = −2αθ0(1 + v)

πγ2(1− v)
(60b)

Using Eqs. (23a) and (23b), leads to:

θ̄1(ζn, t) = − 2θ0
πζ2n

(1− e−α∗ζ2
nt) (61a)

ū1(ξm, t) = −2αθ0(1 + v)

πξ2m(1− v)

(
1− cos

(
ξm
γ

t

))
(61b)

Substituting Eqs. (60a) and (60b) into Eqs. (24a) and
(24b), leads to:

θ1(r, t) = −2θ0
π

∞∑
n=1

an
ζ2n

(1− e−α∗ζ2
nt)K1(r, ζn) (62a)

u1(r, t) = −2αθ0(1 + v)

π(1− v)

∞∑
m=1

bm
ξ2m

(
1

− cos

(
ξm
γ

t

))
K2(r, ξm) (62b)

Eqs. (41a) and (41b) then can be written as:

d3S

dt3
+ α∗ζ2n

d2S

dt2
+

(
(
ξm
γ

)2 − U1U2

)
dS

dt
+ α∗ζ2n

(
ξm
γ

)2

S

= −U2

(
bmU1

2αθ0(1 + v)

πξm(1− v)γ
sin

(
ξm
γ

t

)
+ an

2α∗θ0
π

)
(63a)

d3Q

dt3
+ α∗ζ2n

d2Q

dt2
+

(
(
ξm
γ

)2 − U1U2

)
dQ

dt
+ α∗ζ2n

(
ξm
γ

)2

Q

= −U1

(
anU2

2θ0α
∗

π
e−α∗ζ2nt

)
(63b)
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Solving equations (63a) and (63b), there is:

S(t) = − 2anθ0U2

πζ2n

(
ξm
γ

)2 − 2bmα(1 + v)θ0
πξ2m(1− v)

cos

(
ξm
γ

t

)

+

3∑
i=1

cie
αit (64a)

Q(t) = −2anθ0
πζ2n

e−α∗ζ2
nt

+
1

U2

3∑
i=1

(
α2
i +

(
ξm
γ

)2
)
cie

αit (64b)

where αi’s are the roots of Eq. (53) and the constants
ci can be acquired using Eqs. (59a) to (59c):

The Stress components are shown in Figs. 7 and 8.
Applying thermal load on the inner surface at the ear-
lier moments causes a thermal shock which is observed
in figures. Similar to the mechanical load, dilatation
wave which is produced at the inner surface moves for-
ward from the inner surface and after colliding outer
surface reflects into the medium in the opposite direc-
tion.

The temperature field has the exponential distri-
bution with time, and it takes time the thermal load
effect reaches any radial position and makes a change in
stress components. Contrariwise the pure mechanical
load case, in the pure thermal load radial stress wave
is tensile and produces compressive hoop stress. When
the tensile wave reaches a specific radial position, the
tangential stress component immediately becomes ten-
sile owing to the resistance of the nearby points in the
medium and decays gradually with time.

 c1
c2
c3

 =
2θ0
π


1 1 1
α1 α2 α3

α2
1 +

(
ξm
γ

)2

α2
2 +

(
ξm
γ

)2

α2
3 +

(
ξm
γ

)2


−1



anU2

ζ2n

(
ξm
γ

)2 +
bmα(1 + v)

ξ2m(1− v)

0
anU2

ζ2n

 (65)

Fig. 7. History of dynamic radial stress for different radial positions (case ii).

Fig. 8. History of dynamic hoop stress for different radial positions (case ii).
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Fig. 9 shows the temperature difference with re-
spect to the reference temperature. Due to plotting
the figure in short period of time, the coupling effect
is main part of temperature history.

Figs. 10 and 11 shows the through-thickness varia-
tion of radial and hoop stress components.

As is mentioned due to resistance of nearby points,
tangential component becomes tensile at the initial
moments and then proceeds from positive to negative.
This reality is obviously shown in the Fig. 11.

5. Validation

The present work is validated in a special case with the
problem of isotropic cylinder subjected to uniform tem-
perature throughout the cylinder. In the mentioned
problem, the energy equation has not been solved and
a constant temperature is assumed for all radial sec-
tions of the cylinder and therefore there is no temper-
ature gradient. The history of non-dimensional stress
components are plotted in Figs. 12 and 13. The cor-
responding results of Ding et al. [9] are on the same
figures.

Fig. 9. History of temperature for different radial positions (case ii).

Fig. 10. Through-thickness variation of dynamic radial stress (case ii).

Fig. 11. Through-thickness variation of dynamic hoop stress (case ii).
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Fig. 12. Variation of radial stress for r =
a+ b

2
.

Fig. 13. Variation of hoop stress for r =
a+ b

2
.

It is observed that the results of the current work
are in good agreement with the results of Ding et al. [9]
and the validation of the solution is verified. The non-
dimensional time relation used in the figures is defined
as follows:

t̄ =
Vet

a
(66)

Due to applying thermo-mechanical boundary condi-
tions in the inner and the outer surfaces of the cylin-
der, there are two thermo-elastic waves. The one moves
outward from the inner surface and the other propa-
gates inward the cylinder from the outer surface.

6. Conclusions

The fully coupled dynamic thermoelasticity problem
in a thick hollow cylinder is solved analytically and
closed-form relations are presented for temperature dis-
tribution and stress components. The effect of the
thermo-mechanical coupling and the propagation of
stress waves into the medium for two different cases
are illustrated in the figures and the following conclu-
sions were drawn:

1. Considering thermo-mechanical coupling term in
the heat conduction equation leads to producing
induced temperature gradient.

2. Produced heat due to thermo-mechanical cou-
pling term in the heat conduction equation de-
pends on strain rate, the mechanical and thermal
properties of the material.

3. Induced temperature in adherence to elastic and
thermoelastic waves has the wave nature and ex-
actly at the moment that compressive or tensile
stress wave reaches any radial position increases
or decreases.

4. As it was expected traction free boundary con-
dition reverses the propagated stress wave and
compressive stress wave reflects into the medium
as tensile and vice-versa.

5. Regarding the validation section figures, ther-
moelastic stress wave propagates into the
medium even in the absence of temperature gra-
dient. In addition, applying non-zero boundary
condition on the outer surface of the cylinder
leads to another thermo-elastic wave initiating
from this surface.
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