
تعداد نشریات | 22 |
تعداد شمارهها | 485 |
تعداد مقالات | 5,045 |
تعداد مشاهده مقاله | 9,290,937 |
تعداد دریافت فایل اصل مقاله | 6,135,379 |
The Effect of 2% SiO2 Nanopowder on Mechanical Behavior of Mg AZ31 | ||
Journal of Stress Analysis | ||
دوره 5، شماره 1، آذر 2020، صفحه 69-76 اصل مقاله (4.33 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22084/jrstan.2020.21334.1139 | ||
نویسندگان | ||
F. Barati* ؛ M. Esfandiari؛ S. Babaei | ||
Department of Mechanical Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran. | ||
چکیده | ||
The AZ31 alloy containing nanopowder SiO2, in comparison to other magnesium alloys, can be utilized for manufacturing extruded parts with a high loading rate. The main goal of the present study is to investigate the compressive flow stress for AZ31 alloy reinforced with 2 % SiO2 nano particles (with mean diameter of 35±2 nm) in three different temperatures of 473, 493, and 513 K and three strain rates of 0.0002, 0.002 and 0.02s-1 using ring compression test. The stress-strain curve at three temperatures and three strain rates were obtained by implicating the bulge and numerical correction factors. Having drawn stress and strain curve, a relation between stress and strain using the Zener-Hollomon equation, which is based on activation energy from plastic forming, was found. The coefficients of the Zener-Hollomon equation were computed for achiving the activation energy. | ||
کلیدواژهها | ||
AZ31 alloy؛ The hot ring and compression test؛ Bulge correction factor؛ Zener-Hollomon equation | ||
مراجع | ||
[1] H. Palaniswamy, G. Ngaile, T. Altan, Finite element simulation of magnesium alloy sheet forming at elevated temperatures, J. Mater. Process. Technol., 146(1) (2004) 52-60. [2] G. Vespa, L.W.F. Mackenzie, R. Verma, F. Zarandi, E. Essadiqi, S. Yue, The influence of the as-hot rolled microstructure on the elevated temperature mechanical properties of magnesium AZ31 sheet, Mater. Sci. Eng. A, 487(1-2) (2008) 243-250. [3] C.E. Dreyer, W.V. Chiu, R.H. Wagoner, S.R. Agnew, Formability of a more randomly textured magnesium alloy sheet: Application of an improved warm sheet formability test, J. Mater. Process. Technol., 210 (2010) 37-47. [4] J. Zhang, H.F. Yin, Y. Tang, H.D. Yuan, Y. Wei, Y. Hong-feng, The influence of CF and TLCP coreinforced on the mechanical properties of PA6-based composites, Mater. Res. Express, 5(5) (2018) 121-128. [5] V. Doni Pon, K.S.J. Wilson, Effect of metal nanoparticles on polariton dispersion in low dimensional systems, Mater. Res. Express, 6(11) (2019) 62-73. [6] Z. Zhang, S.H. Chen, Y. Zhang, Effect of hydrotalcite-like compounds with high specific surface area on mechanical properties and carbonation resistance of cementitious composites, Mater. Res. Express, 6(11) (2019) 119-128. [7] K.T. Yang, H.K. Kim, Elevated temperature deformation behavior in an AZ31 magnesium alloy, J. Mech. Sci. Technol., 20 (2006) 1209-1216. [8] C.S. Chung, D.K. Chun, H.K. Kim, Fatigue properties of finegrained magnesium alloys after severe plastic deformation, J. Mech. Sci. Technol., 19 (2005) 1441-1448. [9] Y.V.R.K. Prasad, K.P. Rao, Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: anisotropy of hot workability, Mater. Sci. Eng. A, 487(1-2) (2008) 316-327. [10] M. Kohzu, F. Yoshida, H. Somekawa, M. Yoshikawa, S. Tanabe, K. Higash, Fracture mechanism and forming Limit in deep-drawing of magnesium alloy AZ31, Mater. Trans., 42(7) (2001) 1273-1276. [11] H. Palaniswamy, G. Ngaile, T. Altan, Finite element simulation of magnesium alloy sheet forming at elevated temperatures, J. Mater. Process. Technol., 146(1) (2004) 52-60. [12] F.K. Chen, T.B. Huang, Formability of stamping magnesium-alloy AZ31 sheets, J. Mater. Process. Technol., 142 (2003) 643-647. [13] J.A. del Valle, M.T. Pérez-Prado, O.A. Ruano, Deformation mechanisms responsible for the high ductility in an Mg AZ31 alloy analyzed by electron backscattered diffraction, Metall. Mater. Trans. A, 36 (2005) 1427-1438. [14] Y.Q. Cheng, H. Zhang, Z.H. Chen, K.F. Xian, Flow stress equation of AZ31 magnesium alloy sheet during warm tensile deformation, J. Mater. Process. Technol., 208(1-3) (2008) 29-34. [15] M. Li, Constitutive Modeling of Slip, Twinning, and Untwinning in AZ31B Magnesium, Ph.D. Thesis, Department of Materials Science and Engineering, USA: The Ohio State University, (2006). [16] N.T. Nguyen, M.G. Lee, J.H. Kim, H.Y. Kim, A practical constitutive model for AZ31B Mg alloy sheets with the unusual stress-strain response, Finite Elem. Anal. Des., 76 (2013) 39-49. [17] F. Barati, A numerical approach for determination of flow curve and evaluation of frictional behavior of AZ61 magnesium alloy under elevated temperature forming conditions, Measurement, 74 (2015) 1-10. [18] S. Sharma, A. Honda, S.S. Sing, D. Verma, Influence of tool rotation speed on mechanical and morphological properties of friction stir processed nano hybrid composite of MWCNT-Grapghen-AZ31 magnesium alloy, J. Magnesium Alloys, 7(3) (2019) 487-500. [19] Y. Yan, X. Chu, X., Luo, X. Xu, Y. Zhang, Y.L. Dai, D. Li, L. Chen, T. Xiao, K. Yu, A homogenous microstructural Mg-based matrix model for orthopedic application with generating uniform and smooth corrosion product layerin Ringer’s solution: Study on biodegradable behavior of Mg-Zn alloys prepared by powder metallurgy as a case, J. Magnesium Alloys, In Press (2020), DOI:10/1016/j.jma.2020.03.010. [20] F. Barati, M. Latifi, E. Moayer Far, M.H. Mosallanejad, A. Saboori, Novel AM60-SiO2 nanocomposite produced via ultrasound-assisted casting; production and characteristics, Materials, 12(23) (2019) 3976. [21] Z. Hosseini Tabar, F. Barati, Effects of SiC particles on fatique life of Al-matrix composites, J. Stress Anal., 4(1) (2019) 73-88. [22] A. Haghani, S.H. Noorbakhsh, M. Jahangiri, Investigation of mechanical property and microstructure of nanocomposite AZ31/SiC fabricated by friction stir process, Int. J. Adv. Des. Manuf. Technol., 9(2) (2016) 27-34. [23] F. Fereshte-Saniee, F. Barati, H. Badnava, KH. Falah-nejad, An exponential material model for prediction of the flow curves of several AZ series magnesium alloy intension and compression, Mater. Des., 35 (2012) 1-11. | ||
آمار تعداد مشاهده مقاله: 371 تعداد دریافت فایل اصل مقاله: 236 |