
Number of Journals | 22 |
Number of Issues | 501 |
Number of Articles | 5,252 |
Article View | 9,906,545 |
PDF Download | 6,602,420 |
Journal of Stress Analysis | ||
Volume 5, Issue 1, 0, Pages 21-30 PDF (4.3 M) | ||
DOI: 10.22084/jrstan.2020.21896.1144 | ||
References | ||
[1] E. Birgersson, H. Li, S. Wu, Transient analysis of temperature-sensitive neutral hydrogels, J. Mech. Phys. Solids, 56(2) (2008) 444-466. [2] A.D. Drozdov, Swelling of pH-responsive cationic gels: Constitutive modeling and structure-property relations, Int. J. Solids Struct., 64-65 (2015) 176-190. [3] H. Mazaheri, A. Ghasemkhani, S. Sabbaghi, Study of fluid-structure interaction in a functionally graded pH-sensitive hydrogel micro-valve, Int. J. Appl. Mech., 12(5) (2020) 2050057. [4] W. Toh, T.Y. Ng, J. Hu, Z. Liu, Mechanics of inhomogeneous large deformation of photo-thermal sensitive hydrogels. Int. J. Solids Struct., 51(25-26) (2014) 4440-4451. [5] S. Sugiura, K. Sumaru, K. Ohi, K. Hiroki, T. Takagi, T. Kanamori, Photoresponsive polymer gel microvalves controlled by local light irradiation, Sens. Actuators, A: Physical, 140(2) (2007) 176-184. [6] W. Hong, X. Zhao, J. Zhou, Z. Suo, A theory of coupled diffusion and large deformation in polymeric gels, J. Mech. Phys. Solids, 56(5) (2008) 1779-1793. [7] W. Hong, X. Zhao, Z. Suo, Large deformation and electrochemistry of polyelectrolyte gels, J. Mech. Phys. Solids, 58(4) (2010) 558-577. [8] S. Zheng, Z. Liu, Constitutive model of salt concentration-sensitive hydrogel, Mech. Mater., 136 (2019) 103092. [9] D. Kim, D.J. Beebe, Hydrogel-based reconfigurable components for microfluidic devices, Lab Chip, 7(2) (2007) 193-198. [10] D.T. Eddington, D.J. Beebe, Flow control with hydrogels, Adv. Drug Deliv. Rev., 56(2) (2004) 199-210. [11] L.E. Freed, G.C. Engelmayr Jr., J.T. Borenstein, F.T. Moutos, F. Guilak, Advanced material strategies for tissue engineering scaffolds, Adv. Mater., 21(32-33) (2009) 3410-3418. [12] F.P. Duda, A.C. Souza, E. Fried, A theory for species migration in a finitely strained solid with application to polymer network swelling, J. Mech. Phys. Solids, 58(4) (2010) 515-529. [13] S.A. Chester, L. Anand, A coupled theory of fluid permeation and large deformations for elastomeric materials, J. Mech. Phys. Solids, 58(11) (2010) 1879-1906. [14] S. Cai, Z. Suo, Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels, J. Mech. Phys. Solids, 59(11) (2011) 2259-2278. [15] S.A. Chester, L. Anand, A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: Application to thermally responsive gels, J. Mech. Phys. Solids, 59(10) (2011)1978-2006. [16] Z. Ding, Z. Liu, J. Hu, S. Swaddiwudhipong, Z. Yang, Inhomogeneous large deformation study of temperature-sensitive hydrogel, Int. J. Solids Struct., 50(16-17) (2013) 2610-2619. [17] H. Mazaheri, M. Baghani, R. Naghdabadi, Inhomogeneous and homogeneous swelling behavior of temperature-sensitive poly-(Nisopropylacrylamide) hydrogels, J. Intell. Mater. Syst. Struct., B, 27(3) (2016) 324-336. [18] H. Mazaheri, Study of swelling behavior of temperature sensitive hydrogels considering inextensibility of network, Scientia Iranica B, 26(2) (2019) 887-896. [19] R. Marcombe, S. Cai, W. Hong, X. Zhao, Y. Lapusta, Z. Sou, A theory of constrained swelling of a pH-sensitive hydrogel, Soft Matter., 6(4) (2010) 784-793. [20] A. Suzuki, T. Tanaka, Phase transition in polymer gels induced by visible light, Nature, 346(6282) (1990) 345-347. [21] A. Suzuki, Phase Transition in Gels of Submillimeter Size Induced by Interaction with Stimuli, In: K. Dusek, (eds) Advances in Polymer Sience, Heidelbery, (1993) 199-240. [22] D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, 404(6778) (2000) 588-590. [23] D. Kim, D.J. Beebe, A bi-polymer micro one-way valve, Sens. Actuators, A: Physical, 136(1) (2007) 426-433. [24] H. Mazaheri, M. Baghani, R. Naghdabadi, S. Sohrabpour, Inhomogeneous swelling behavior of temperature sensitive PNIPAM hydrogels in microvalves: analytical and numerical study, Smart Mater. Struct., 24(4) (2015) 045004. [25] N. Arbabi, M. Baghani, J. Abdolahi, H. Mazaheri, M. Mosavi-Mashhadi, Study on pH-sensitive hydrogel micro-valves: A fluid–structure interaction approach, J. Intell. Mater. Syst. Struct., 28(12) (2016) 1589-1602. [26] H. Mazaheri, A. Namdar, A. Amiri, Behavior of a smart one-way micro-valve considering fluid–structure interaction, J. Intell. Mater. Syst. Struct., 29(20) (2018) 3960-3971. [27] P.J. Flory, J. Rehner Jr, Statistical mechanics of cross-linked polymer networks II. Swelling, J. Chem. Phys., 11(11) (1943) 521-526. [28] M.L. Huggins, Some properties of solutions of long-chain compounds, J. Chem. Phys., 46(1) (1942) 151-158. [29] F. Afroze, E. Nies, H. Berghmans, Phase transitions in the system poly(Nisopropylacrylamide)/water and swelling behaviour of the corresponding networks, J. Mol. Struct., 554(1) (2000) 55-68. [30] H. Mazaheri, M. Baghani, R. Naghdabadi, S. Sohrabpour, Coupling behavior of the pH/temperature sensitive hydrogels for the inhomogeneous and homogeneous swelling, Smart Mater. Struct., 25(8) (2016) 085034. [31] W. Hong, Z. Liu, Z. Suo, Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load, Int. J. Solids Struct., 46(17) (2009) 3282-3289. [32] H. Mazaheri, A. Ghasemkhani, Analytical and numerical study of the swelling behavior in functionally graded temperature-sensitive hydrogel shell, J. Stress Anal. 3(2) (2019) 29-35. | ||
Statistics Article View: 959 PDF Download: 455 |