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Abstract

Phase-field method is one of the recent developed fracture simulation methods
which has attracted much interest in the last decade. Phase-field method can
precisely simulate the crack nucleation as well as crack propagation path in
complicated geometries. In general, phase filed method is a nonlocal theory
that defines the cracks and other defects as a continuous part of the geometry
with defining a length scale parameter. The major deficiency of this method is
that it computationally is very time consuming. In this paper, a new numerical
method based on finite element method was proposed to diminish the computa-
tional cost. The suggested numerical method was coded in Abaqus/Standard
using an UEL subroutine. The simulations of different two-dimensional
geometries demonstrate the capability of this method to predict the fracture
process of brittle material. Results show that the proposed numerical method
could significantly decrease the solution time in comparison to other methods.

Nomenclature
d Phase field parameter Γ Fracture surface density
lc Length scale parameter W Elastic strain energy
W+ Tensile contribution of the stored elastic

strain energy
W− Compressive contribution of the stored

elastic strain energy
ε Strain tensor σ Stress tensor
Gc Critical fracture energy per unit area g Degradation function
λ & µ Lame constants u Displacement vector
b Body force t Traction vector
ρ Density H History parameter
K Element stiffness matrix R Residual

1. Introduction

The fracture prediction of materials has attracted
strong interest in the computational solid mechanics.
Recently, phase-field method has demonstrated signif-
icant capability to simulate the fracture process. It

has great ability to precisely determine the path of
crack during propagation through minimizing an en-
ergy function. The phase-field method is a continuum
approach that utilizes a diffuse representation of cracks
in the place of actual discontinuities. Diffuse represen-
tation of cracks guarantees the continuous displace-
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ment field and tackles some mathematical and com-
putation obstacles. The geometry of diffuse crack is
controlled by a length scale parameter which is an ad-
ditional parameter of the fracture model.

Inability to describe the crack nucleation is the
main limit of the fracture simulations which models
discontinuities as a sharp crack. However, the phase
field models have shown that they can be implemented
in a straightforward numerical procedure, and have
proved to precisely describe the fracture process from
crack nucleation until final rapture. In phase field for-
mulations, a continuous variable, designated the phase
field parameter, is used to define a continuous shift
between the broken and unbroken interfaces. This pa-
rameter is a scalar-valued damage quantity which with
its gradients incorporated into the constitutive equa-
tion [1].

The phased field method was initially developed by
Francfort and Marigo [2] to eliminate some restrictions
associated with the Griffith theory of brittle fracture
such as incapability to estimate crack initiation and
branching, as well as predicting curved crack paths.
They assumed that the total energy potential is a
function of a surface term associated with the energy
required for the creation of a crack. Then, this po-
tential is minimized with respect to the displacement
vector and the defused crack parameter. Further im-
provements were presented by Bourdin et al. [3, 4];
they proposed the regularization of the sharp crack ge-
ometry into a diffuse crack defined by introducing a
scalar variable which gradually makes connection be-
tween cracked and intact states of the material. Kuhn
and Müller [5] emphasized that the irreversible char-
acter of crack propagation should be incorporated into
the phase field evaluation equation. They confirmed
that the boundary value problem with the phase-field
evolution equation produces an exponential solution
type. Moreover, Kuhn and Müller [6] developed a new
FE algorithm with exponential shape functions and
showed that the suggested method make more precise
results compared to the FE algorithm with Lagrange
elements. Lancioni and Royer-Carfagni [7] suggested
a modification of the function proposed by Bourdin
et al. [3] to solve problems with deviatoric-type frac-
ture. However, their model could not correctly simu-
late the inter-penetration and also crack-opening mode
in the cases where the compressive stress is dominant.
Amor et al. [8] improved the prior model by adding a
degradation function to the spherical component of the
stress. Significant improvements of this theory were
carried out by Miehe et al. [9, 10]. They established a
consistent thermodynamical background to model brit-
tle fracture. Their model would be able to simulate
the phase field evaluation as rate-independent or vis-
cous material response. In particular, their formulation
guarantees the irreversibility of crack propagation dur-
ing the cyclic loading. Miehe et al. [9] in proposed

a mixed finite element procedure where the coupled
system of stress equilibrium and the phase-field evolu-
tion equations is solved simultaneously, while in the
model by Miehe et al. [10] a numerical algorithm,
namely a staggered scheme, was proposed to decou-
ple the stress equilibrium and the phase-field evolution
equations and a history parameter were introduced as
a state variable to guarantee the irreversibility of crack
growth.

Some researchers have demonstrated that the phase
field approach can also be extended to simulate the
dynamic fracture problems [11–15]. Furthermore, the
phase field method has been implemented to simu-
late some attractive problems in the fracture mechanic
fields. For example, Bourdin et al. [16] and Mike-
lic et al. [17] implemented the phase field method to
model the hydraulic fracturing, Wilson et al. [18] sim-
ulated the failure of piezoelectric ceramics, Miehe and
Schanzel [19] evaluated the rapture of rubbery poly-
mers and Gültekin et al. [20] utilized the phase-field
approach to estimate the arterial wall failure process.
Some researchers also focused on solving the numer-
ical difficulties and decreasing the computation time
[21–25].

In this paper, a new numerical procedure is pro-
posed to decrease the computational cost. The pro-
posed numerical method was implemented in the com-
mercial finite element Abaqus/Standard via an UEL
subroutine. The fracture analysis of different 2D ge-
ometries exhibited the efficiency of this method to pre-
dict the fracture process of brittle material.

2. Governing Equation

2.1. Phase-field Formulation

In order to basically explain the phase field formula-
tion, an infinitely extended 1D bar located along the
x axis with a cross section Γ was considered. It was
assumed that a diffusive crack exists in the middle of
the bar at the axial position x = 0, Fig. 1a. The crack
topology could be defined by a field variable d ∈ [0, 1].
In the phase field method, d which is designated as the
phase-field parameter determines the amount of dam-
age along the bar. The unbroken and the completely
damaged state of the material are characterized with
d = 0 and d = 1, respectively.

According to this idea, the non-smooth phase-field
parameter can be approximated by an exponential
function as [10]:

d (x) = e−
|x|
lc (1)

where lc denotes the length scale parameter. The ex-
ponential function has the property that d(0) = 1 and
d(±∞) = 0. It is clear that Eq. (1) is the solution of
the following differential equation which is subject to
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the essential boundary conditions.

d (x)− l2cd
′′
(x) = 0 in Ω

d (0) = 1

d(±∞) = 0

(2)

Eq. (2) is the Euler equation of the following vari-
ational form [10]:

I (d) =
1

2

∫
Ω

(d2 + l2cd
′2
)dV (3)

Fig. 1. Crack modeling in phase field method, a) 1D
bar, b) Sharp crack at x = 0 and c) Diffusive crack at
x = 0 modeled with the length scale lc.

It can be easily calculated that the integration over
1D bar volume gives I(d = e

|x|
lc ) = lcΓ. Therefore, the

fracture surface is related to the length scale parame-
ter and fracture surface density could be introduced as
[10]:

Γ (d) =
1

lc
I (d) =

1

2lc

∫
Ω

(d2 + l2cd
′2
)dV

=

∫
Ω

γ(d, d
′
)dV

(4)

where γ
(
d, d

′
)

is the crack surface density defined as
a function of the phase-field parameter and its spatial
gradient. The multidimensional form of crack surface
density can be expanded as below [10]:

γ (d,∇d) =
1

2lc
d2 +

lc
2
|∇d|2 (5)

Crack surface density has a significant role in the
estimation of fracture process. Based on phase field
theory, the sharp crack surface geometry inside a solid,
as illustrated in Fig. 1b, could be modeled with a dif-
fusive crack, visualized in Fig. 1c. Fig. 2 schematically
illustrates a discrete and a diffusive crack in a 3D body.
As can be seen in Fig. 2, the internal discontinuity is
regularized by a diffusive topology governed by defin-
ing a scalar valued parameter.

Fig. 2. Phase-field modeling, a) Discrete crack surface
b) Diffusive crack surface.

Taking the advantage of the above-outlined defini-
tion of the regularized crack, a time-dependent fracture
evolution law could be established. This evolution is
achieved using an energetic description as outlined be-
low. Describing the damaged material based on Grif-
fith’s theory of brittle fracture, the stored energy can
be express as [26]:

Ψ(ε,Γ) =

∫
Ω

W (ε(u)) dΩ +

∫
Γ

Gc dΓ (6)

where W and ε are the elastic strain energy and the
strain tensor, respectively. Γ is the boundary of crack
and Gc is the critical fracture energy per unit area.
To evaluate the crack initiation and propagation, the
stored energy, Eq. (6), should be minimized. Ambati
et al. [1] suggested the following phase-field approxi-
mation of Eq. (6):

Ψ(ε, d) =

∫
Ω

g(d)W (ε) dΩ +

∫
Γ

Gc dΓ (7)

where g(d) is a degradation function which controls the
elastic strength reduction. To overcome the numerical
complications, Bourdin et al. [4] proposed the follow-
ing approximation for the second term of Eq. (7):∫

Ω

Gcγ(d,∇d) dΩ ≈
∫
Γ

GcdΓ (8)

where γ, crack surface density, is defined based on Eq.
(5). It is obvious that cracks heal during compressive
loading. Therefore, it is proposed to decompose the
elastic strain energy to tensile and compressive terms
[8–10]. The suggested approximation takes the follow-
ing form

Ψ(ε, d) =

∫
Ω

{
g (d)W+ +W−} dΩ

+

∫
Ω

Gcγ (d,∇d) dΩ

(9)

where W+ and W− denote the tensile and compres-
sive contribution of the stored elastic strain energy, re-
spectively. In order to define the tensile contribution,
Miehe et al. [10] introduced the positive and negative
part of the strain tensor as:

ε = ε+ + ε− (10)
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This is the spectral decomposition of the strain ten-
sor based on its principal values and directions. These
parts are defined as [10]:

ε+ =

n∑
i=1

⟨εi⟩+ni ⊗ ni (11)

ε− =

n∑
i=1

⟨εi⟩−ni ⊗ ni (12)

where εi and ni are i-th principal strain and the prin-
cipal strain direction, respectively. The bracket oper-
ators are defined as ⟨x⟩+ := (x + |x|)/2 and ⟨x⟩− :=
(x − |x|)/2. Based on Eqs. (11) to (12), tensile and
compressive part of the stored elastic strain energy
could be determined as [10]:

W+ =
λ

2
⟨trε⟩2+ + µε+ : ε+ (13)

W− =
λ

2
⟨trε⟩2− + µε− : ε− (14)

where λ and µ are Lame constants for elastic response.
It should be emphasized that both terms are positive
and the volumetric contribution is either positive or
negative according to the sign of the trace of strain
tensor.

The degradation function, g (d), has a significant
role in the phase-field formulation. It determines the
material responses to changes in the phase field param-
eter. It is assumed to have the properties that g(0) = 1,
g(1) = 0 and g

′
(1) = 0. In this work, Quadratic degra-

dation function was implemented which is defined as
[10]:

g(d) = (1− d)
2
+ κ (15)

where κ is a scalar parameter chosen to be so small
that avoids the numerical problem when the phase field
parameter reaches unity. Quadratic degradation func-
tion is a simple function which has been most widely
implemented in the literature [4].

2.2. Minimizing the Phase-field Formulatio

In this section, the governing equations of the phase
field method is derived based on the global energy rate
balance principle. At the beginning, the rate of exter-
nal work is defined as [27]:

Pext =

∫
∂Ω

t, u̇d∂Ω+

∫
Ω

b, u̇dΩ (16)

where u is the displacement vector. b and t are the
body force and traction vector applied to the bound-
ary, respectively. For dynamic response, the kinetic
energy functional is given by [27]:

K =

∫
Ω

1

2
ρu̇ · u̇dΩ (17)

where ρ is the density. According the first law of ther-
modynamics and neglecting the dissipation, the bal-
ance of energy can be written as [27]:

K̇ + Ψ̇− Pext = 0 (18)

Substituting Eq. (9) and Eqs. (16) to (17) into
Eq. (18) and using Eq. (5), the rate of internal work
funsction for the phase field theory could be obtained.
After applying the divergence theorem, the balance of
energy can be presented as [27]:∫

Ω

[−∇,σ − b+ ρü] · u̇dΩ

+

∫
Ω

[g
′
(d)W+ +

Gc

lc
d+Gclc∆d]ḋdΩ

+

∫
∂Ω

[σ,n− t] · u̇d∂Ω

+

∫
∂Ω

[2Gclc∇d.n] · ḋd∂Ω = 0

(19)

where ∂Ω and ∆ are the boundary surrounding the ma-
terial and Laplace operator, respectively. It is assumed
that the Eq. (19) must hold for arbitrary values of u̇
and ḋ. Therefore, the strong form for the phase field
initial boundary value problem is obtained as [27]:

∇.σ − b+ ρü = 0 (20)
Gc

lc
d−Gclc∆d = −g

′
(d)W+ (21)

where

σ = g (d)
∂W+

∂ε
+

∂W−

∂ε
(22)

Also, the following boundary conditions are gained:

σn = t on ∂Ωt

∇d · n = 0 on ∂Ω

u = u on ∂Ωu

(23)

Displacement vector and traction are prescribed on
∂Ωu and ∂Ωt, respectively; n is the outward unit nor-
mal vector of the boundary. The initial conditions are
given by u0 for displacements, u̇0 for velocities.

It should be mentioned that the above formula-
tion does not prevent cracks healing when loads are
removed. To enforce the irreversibility of crack prop-
agation during unloading, Miehe et al. [10] proposed
to replace the strain energy in the phase-field equa-
tion, Eq. (21), by a history parameter, H, which has a
role like a threshold parameter and satisfies the Kuhn–
Tucker loading/unloading conditions [10]:

W+ −H ≤ 0, Ḣ ≥ 0, Ḣ(W+ −H) = 0 (24)

In the monotonically increasing load, using the his-
tory parameters or tensile contribution of the stored
elastic strain energy has no effect on the results. On the
other hand, disregarding the history parameter does
not make any thermodynamic inconsistencies.
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3. Numerical Simulation

In this section, a new numerical technique is suggested
for the phase field method based on the Eq. (20) and
Eq. (21). The numerical procedure is coded in the
finite element method software ABAQUS by a user de-
fined element subroutine (UEL). In UEL subroutine,
in each increment the displacement vector and incre-
mental displacement vector of each node are available.
This makes it possible to define the tensile and com-
pressive parts of the stored elastic energy in each itera-
tion of an increment, Eqs. (13) to (??). With defining
W+, Eq. (21) becomes a linear differential equation of
phase field parameter and could be easily solved. So,
the phase field differential equation, Eq. (21), would
be decoupled from Eq. (20) and each equation could
be solved separately. This split scheme is named stag-
gered method in literature [10].

The Galerkin finite element method is utilized to
develop a numerical procedure. The weak form of Eq.
(21) could be established by multiplying an appropri-
ate weighting function, η, to Eq. (21) and applying the
divergence theorem as:

∫
Ω

[(
1 +

2W+lc
Gc

)
dη + l2c∇d,∇η

]
dΩ =∫

Ω

(
2W+lc
Gc

)
η dΩ (25)

In the Galerkin finite element procedure, it is most
common practice to use same approximation for the
weight functions and the trial solutions. Therefore, in
the UEL subroutine for each element the phase field
parameter d and weight function are discretized as (for
convenience, a matrix notation is used):

d = [N ] {d}
η = [N ] {η}

(26)

where [N ] denotes the shape function which is a row
matrix of n components associated with the number of
nodes in an element; {d} and {η} are n×1 vectors of the
phase-field parameter and weighting function values at
each node, respectively. The corresponding gradient of
Eq. (26) can be given by:

∇d = [B] {d}
∇η = [B] {η}

(27)

where B is a matrix with spatial derivatives of the cor-
responding shape function row matrix. Substituting
Eqs. (26) and (27) into Eq. (25), the following equa-
tion is gained.

[K]
dd {d} = {F} (28)

where

[K]
dd

=

∫
Ω

[(
1 +

2W+lc
Gc

)
[N ]

T
[N ] + l2c [B]

T
[B]

]
dΩ

{F} =

∫
Ω

(
2W+lc
Gc

)
[N ]

T
dΩ (29)

Solving Eq. (28) using 4-nodes quadrilateral
isoparametric elements, the phase-field parameter
value at each node could be estimated. All integrals
in Eq. (28) were calculated using the nine-point Gaus-
sian quadrature rule. The numerical results show that
the reduced integration scheme does not converge for
Eq. (28). By calculating the phase-field parameter
value at each node, the average value of the phase-
field parameter, dav, is defined for each element and
incorporated into the Eq. (27). Therefore, the weak
form of the stress equilibrium is defined by implement-
ing the appropriate weighting function and applying
the divergence theory to Eq. (20). Discretizing the
displacement vector similar to phase field parameter,
u = [N ]u {u} ,∇u = [B]u {u}, the following residual
can easily be calculated:

R = F int − F ext

=

∫
Ω

[B]
T
uσdΩ−

∫
Ω

[N ]
T
u bdΩ−

∫
Ω

[N ]
T
u tdΩ

(30)

Based on Miehe et al. [9], stress tensor is introduced
as:

σ =
[
(1− dav)

2
+ κ

]
3∑

i=1

[
λ⟨ε1 + ε2 + ε3⟩+ + 2µ⟨εi⟩+

]
ni ⊗ ni

+

3∑
i=1

[
λ⟨ε1 + ε2 + ε3⟩− + 2µ⟨εi⟩−

]
ni ⊗ ni

(31)

Furthermore, the stiffness matrix for each element
could be determined as:

K =

∫
Ω

[
(1− dav)

2
+ κ

]
[B]

T

u
[D] [B]udΩ (32)

where [D] is the element stiffness matrix. Using re-
duced integration scheme, the residual vector and stiff-
ness matrix can be calculated. Abaqus employs an
incremental-iterative strategy utilizing the Newton–
Raphson approach to determine the displacement of
all nodes of model. On the other hand, for each in-
crement the solution procedure iterates until the phase
field parameter and the displacement field converge.
Fig. 3 shows the flowchart of the proposed numerical
method.
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Fig. 3. Flowchart of the proposed numerical method.

4. Results

First of all, the simplest case, which is a 2D plane
strain element, was considered to examine the effect
of phase field parameter on material response. The
dimensions of this element was 1 × 1mm in x and y
direction. The bottom nodes were constrained in y di-
rection and nodes on a vertical side were constrained
in x direction. The opposite vertical side gradually un-
derwent 0.02mm displacement in the x direction, then
the applied displacement was removed. Subsequently,
0.1mm displacement was applied in the x direction.
The Young’s modulus was set to E = 210kN/mm2 and
the Poisson’s ratio to ν = 0.3. The critical energy
release rate was Gc = 5N/mm and the length scale
parameter was lc = 0.1mm.

Fig. 4 displays the effect of the phase field param-
eter on the material response. As can be seen in Fig.
4a, the strength of material decreases while the phase
field parameter increases. It is also obvious that the
model has good agreement with the results introduced
by Miehe et al. [10] for a similar element. The phase
field parameter curves will be exactly equal and the
discrepancy between stress-strain curves is less than
1 percent. Furthermore, the model satisfies the irre-
versibility of crack propagation during unloading and
also the phase filed parameter remain constant during
unloading process.

Fig. 4. a) Stress- strain curve and b) Phase field
parameter- strain curve for a unit square element

The proposed numerical model converges with
maximum increment size in comparison with other
method proposed in the literature. Fig. 5 displays the
effect of increment number on the response of a square
element mentioned above. As can be seen in Fig. 5a,
the results converge for increment number more than
20. But, in the numerical method proposed by Mol-
nár and Gravouil [21], the convergence is not achieved
for increment number less than 1000. It shows the
capability of the proposed model to introduce results
with small number of increments and consequently de-
creases the computational time. Table 1 compares the
estimated error of the maximum value of the stress-
stress curves with different increment number. The
error is defined as the maximum discrepancy from the
results introduced by Miehe et al. [10]. These results
show that the proposed model could capture the mate-
rial behavior with the minimum number of increments.
This means that this method could decrease the com-
putational cost.

To examine the proposed numerical method to pre-

M. Aghamohamadpour and S.H. Hoseini, A Numerical Method to Analyze the Brittle Fracture Using
Phase-field Theory: 1–10 6



dict the fracture process of the brittle fracture, the well-
known single edge notched tensile sample was consid-
ered. The geometry of the sample was a unit square
containing an edge notch, Fig. 6a. The length of the
notch was a half of the square size with the distance
between the opposite faces of the notch tip equal to
h. With decreasing the size of h, the notch geome-
try coincides with the theoretical crack geometry. The
boundary conditions are defined as the bottom side of
the specimen is fixed, while the top side is moved. The
FEM model of the specimens is depicted in Fig. 6b.

Fig. 5. Stress-strain curve for unit square under
one dimensional extension a) The proposed numerical
method, b) The staggered method proposed by Molnár
and Gravouil [21].

Table 1
The error of the stress-stress curves with different increment
number.
Number of increments Proposed model Molnár and Gravouil [21]

20 3% 166%
100 1% 21%
1000 1% 2%

The region around the notch path is refined in or-
der to reach the mesh size equal to h. As can be seen
in this figure, when the applied load reaches the max-
imum value, the crack initiates propagation horizon-
tally. Fig. 6e displays that the results converge when
the minimum size of mesh, h, decreases; and insignifi-
cant discrepancy is observed between mesh size equal
to 0.002 and 0.002mm.

(e)
Fig. 6. Fracture analysis of single edge notched tensile
sample.

Fig. 7a shows the dependency of the results on
increment number. As can be seen in Fig. 7, the dif-
ferences are negligible when the number of increments
is more than 1000 and the maximum load carrying
capacity is approximately the same. In Fig. 7b the
reaction force is shown for the tensile specimens for
different length scale parameters (lc). It can be seen
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that the maximum value of reaction force reduces when
the length scale parameter increases. Furthermore, by
increasing the length scale parameter the results grad-
ually converge.

Fig. 7. Dependency of the results on a) Increments
size, and b) Length scale parameter.

To examine the utility of the new numerical imple-
mentation to predict the fracture process of complex
geometries, an asymmetric double notch specimen was
used. The exact geometry is illustrated in Fig. 8a.
The material properties are E = 210kN/mm2, ν = 0.3,
lc = 0.1m, gc = 5N/mm. The mesh is well refined
and has the size of h = 0.002mm around the notch.
The tensile deformation is implemented by applying
displacement on the top boundary of the sample. The
bottom side of the sample is fixed. The simulated frac-
ture process and crack path is shown in Fig. 8b. The
obtained crack propagation path pattern is in excel-
lent agreement with the results proposed by Molnár
and Gravouil [21]. Furthermore, the proposed method
can simulate the slender pattern of crack propagation
which is more realistic than the Molnar pattern.

(c)
Fig. 8. a) Geometry of the double notched asymmet-
ric tensile test, b) Crack propagation pattern based on
proposed method, and c) Molnar method [21].

Fig. 9 demonstrates the fracture process in the
plate with double circular notches. These samples do
not have any pre-existing cracks. The material prop-
erties are E = 210kN/mm2, ν = 0.3, lc = 0.1m,
gc = 5N/mm. The mesh is well refined and has the
size of h = 0.002mm around the notch. The tensile
deformation is implemented by applying displacement
on the top boundary of the sample. The bottom side of
the sample is fixed. The simulated fracture process and
crack path is shown in Fig. 9. Fig. 9a shows the path
of crack propagation in the plate with double symmet-
ric circular notches and Fig. 9b shows path in the plate
with double asymmetric circular notches. The results
proves that the suggested numerical technique can pre-
cisely predict the fracture processed without modelling
any pre-existing crack in the samples.

The final model considered in this paper is a
notched plate, with load application by a top pin and a
fixed lower pin, and with a hole offset from the center to
induce mixed-mode fracture. This test was experimen-
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tally implemented by Ambati et al. [1]. The geometry
of the sample is depicted in Fig. 10a. The material was
cement mortar, composed of 22% cement 66% sand and
12% water. The material is expected to behave linearly
elastic until brittle fracture occurs. The Yong Mod-
ulus, Poisson’s ratio, and critical energy release rate
are E = 6kN/mm2, ν = 0.22, and gc = 2.28N/mm,
respectively. The fractured specimen is displayed in
Fig. 10b. A curved crack develops from the notch to
the large hole. Later, a secondary straight crack ap-
pears from the hole to the sample edge. The numerical
simulations were performed with with a length scale
parameter lc = 0.1mm. The mesh consists of quadri-
lateral elements with refinement in the areas where the
crack is likely to propagate. As can be seen in Figs.
10c and 10d, simulations could precisely capture the
experimentally observed crack pattern.

Fig. 9. Crack propagation pattern based on proposed
method for a) Plate with double symmetric circular
notches, and b) Plate with double asymmetric circular
notches.

5. Conclusions

In this paper a numerical procedure based on FEM was
proposed to simulate the phase-field theory. The nu-
merical algorithm was implemented in the commercial
FE code Abaqus/Standard to simulate brittle fracture
in 2D solids. The numerical procedure was coded in
the context of a user defined element subroutine.

The method is based on the minimizing the rate-
independent variational form of the stored energy in
the material. The equilibrium and the phase field equa-
tion were decoupled and solved separately. The con-
nection was established using a so-called history vari-
able, which contains the materials elastic potential en-
ergy.

The utility of the method is shown through several
examples. It was shown that the result could converge
based on the proposed method for large increment size.
This decreases the computational cost of the phase field

theory. Moreover, there is no need to severely decrease
the element size . Sufficient amount of meshes could
capture the material response.

Fig. 10. a) Geometry of the notched plate, b) The
fractured specimen, c) Crack initiation, and d) Final
fracture based on the proposed method.

References

[1] M. Ambati, T. Gerasimov, L. De Lorenzis, A re-
view on phase-field models of brittle fracture and
a new fast hybrid formulation, Comput. Mech., 55
(2014) 383-405.

[2] G. Francfort, J.J. Marigo, Revisiting brittle frac-
ture as an energy minimization problem, J. Mech.
phys. Solids, 46(8) (1998) 1319-1342.

[3] B. Bourdin, G.A. Francfort, J.J. Marigo, Numer-
ical experiments in revisited brittle fracture, J.
Mech. phys. Solids, 48(4) (2000) 797-826.

[4] B. Bourdin, G.A. Francfort, J.J. Marigo, The vari-
ational approach to fracture, J. Elast., 91 (2008)
5-148.

Journal of Stress Analysis/ Vol. 5, No. 1, Spring − Summer 2020 9



[5] C. Kuhn, R. Müller, A continuum phase field
model for fracture, Eng. Fract. Mech., 77(18)
(2010) 3625-3634.

[6] C. Kuhn, R. Müller, A new finite element tech-
nique for a phase field model of brittle fracture, J.
Theor. Appl. Mech., 49(4) (2011) 1115-1133.

[7] G. Lancioni, G. Royer-Carfagni, The variational
approach to fracture mechanics. A practical appli-
cation to the French Panthon in Paris, J. Elast.,
95(1-2) (2009) 1-30.

[8] H. Amor, J.J. Marigo, C. Maurini, Regularized
formulation of the variational brittle fracture with
unilateral contact: Numerical experiments, J.
Mech. phys. Solids, 57(8) (2009) 1209-1229.

[9] C. Miehe, M. Hofacker, F. Welschinger, A phase
field model for rate-independent crack propaga-
tion: Robust algorithmic implementation based
on operator splits, Comput. Methods Appl. Mech.
Eng., 199(45-48) (2010) 2765-2778.

[10] C. Miehe, F. Welschinger, M. Hofacker, Thermo-
dynamically consistent phase-field models of frac-
ture: Variational principles and multi-field FE
implementations, Int. J. Numer. Methods Eng.,
83(10) (2010) 1273-1311.

[11] C.J. Larsen, Models for dynamic fracture based on
griffith’s criterion, In: Hackl. (eds) IUTAM sym-
posioum on variational concepts with applications
to the Mechanics of Materials, IUTAM Bookseries,
Vol. 21, Springer, Dordrecht, (2010).

[12] C.J. Larsen, C. Ortner, E. Suli, Existence of solu-
tions to a regularized model of dynamic fracture,
Math. Methods Models Appl. Sci., 20(7) (2010)
1021-1048.

[13] B. Bourdin, C.J. Larsen, C.L. Richardson, A
time-discrete model for dynamic fracture based on
crack regularization, Int. J. Fract., 168(2) (2011)
133-143.

[14] M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R.
Hughes, C.M. Landis, A phase-field description of
dynamic brittle fracture, Comput. Methods. Appl.
Mech. Eng., 217-220 (2012) 77-95.

[15] M. Hofacker, C. Miehe, A phase field model of
dynamic fracture: Robust field updates for the
analysis of complex crack patterns, Int. J. Numer.
Methods Eng., 93(3) (2013) 276-301.

[16] B. Bourdin, C.P. Chukwudozie, K. Yoshioka, A
variational approach to the numerical simulation
of hydraulic fracturing, In Proceedings of the 2012
SPE Annual Technical Conference and Exhibition,

volume SPE 159154, Society of Petroleum Engi-
neers Publisher, (2012).

[17] A. Mikelic, M.F. Wheeler, T. Wick, A phase-field
method for propagating fluid-filled fractures cou-
pled to a surrounding porous medium, Multiscale
Model. Simul., 13(1) (2015) 367-398.

[18] Z.A. Wilson, M.J. Borden, C.M. Landis, A phase-
field model for fracture in piezoelectric ceramics,
Int. J. Fract., 183(2) (2013) 135-153.

[19] C. Miehe, L.M. Schanzel, Phase field modeling of
fracture in rubbery polymers. part I: Finite elas-
ticity coupled with brittle failure, J. Mech. Phys.
Solids, 65 (2014) 93 -113.

[20] O. Gültekin, H. Dal, G.A. Holzapfel, A phase-field
approach to model fracture of arterial walls: the-
ory and finite element analysis, Comput. Methods
Appl. Mech. Eng., 312 (2016) 542-566.

[21] G. Molnár, A. Gravouil, 2D and 3D Abaqus im-
plementation of a robust staggered phase-field so-
lution for modelling brittle fracture, Finite Elem.
Anal. Des., 130 (2017) 27-38.

[22] P. Zhang, X. Hu, X. Wang, W. Yao, An iteration
scheme for phase field model for cohesive fracture
and its implementation in Abaqus, Eng. Fract.
Mech., 204 (2018) 268-287.

[23] T.K. Mandal, V.P. Nguyen, Jian-Ying Wu,
Length scale and mesh bias sensitivity of phase-
field models for bbrittle and cohesive fracture,
Eng. Fract. Mech., 217 (2019) 106532.

[24] K. Seleš, T. Lesičar, Z. Tonković, J. Sorić, A
residual control staggered solution scheme for
the phase-field modeling of brittle fracture, Eng.
Fract. Mech., 205 (2019) 370-386.

[25] J. Fang, C. Wu, T. Rabczuk, C. Wu, C. Ma, G.
Sun, Q. Li, Phase Field Fracture in Elasto-plastic
Solids: Abaqus implementation and case studies,
Theor. Appl. Fract. Mech., 103 (2019) 102252.

[26] M.J. Borden, T.J.R. Hughes, C.M. Landis, A.
Anvari, I.J. Lee, A phase-field formulation for
fracture in ductile materials: Finite deformation
balance law derivation, plastic degradation, and
stress triaxiality effects, Comput. Methods Appl.
Mech. Eng., 312 (2016) 130-166.

[27] M.J. Borden, T.J.R. Hughes, C.M. Landis, C.V.
Verhoosel, A higher-order phase-field model for
brittle fracture: Formulation and analysis within
the isogeometric analysis framework, Comput.
Methods Appl. Mech. Eng., 273 (2014) 100-118.

M. Aghamohamadpour and S.H. Hoseini, A Numerical Method to Analyze the Brittle Fracture Using
Phase-field Theory: 1–10 10


	A Numerical Method to Analyze the Brittle Fracture Using Phase-field Theory  M. Aghamohamadpour, S.H. Hoseini



