
Number of Journals | 22 |
Number of Issues | 485 |
Number of Articles | 5,052 |
Article View | 9,296,989 |
PDF Download | 6,139,830 |
Journal of Stress Analysis | ||
Article 11, Volume 4, Issue 2, 0, Pages 115-125 PDF (2.45 M) | ||
DOI: 10.22084/jrstan.2020.20922.1127 | ||
References | ||
[1] R.S. Mishra, P.S. De, N. Kumar, Friction Stir Welding and Processing: Science and Engineering, Springer International Publishing, (2014). [2] N. Dialami, M. Cervera, M. Chiumenti, C. A. de Saracibar, Local–global strategy for the prediction of residual stresses in FSW processes, Int. J. Adv. Manuf. Technol., 88(9-12) (2017) 3099-3111. [3] M. Bachmann, J. Carstensen, L. Bergmann, J.F. dos Santos, C.S. Wu, M, Rethmeier, Numerical simulation of thermally induced residual stresses in friction stir welding of aluminum alloy 2024-T3 at different welding speeds, Int. J. Adv. Manuf. Technol., 91(1-4) (2017) 1443-1452. [4] L. Fratini, S. Pasta, Residual stresses in friction stir welded parts of complex geometry, Int. J. Adv. Manuf. Technol., 59(5-8) (2012) 547-557. [5] P. Dong, Residual stresses and distortions in welded structures: a perspective for engineering applications, Sci. Technol. Weld. Joining, 10(4) (2005) 389-398. [6] V. Richter-Trummer, E. Suzano, M. Beltrão, A. Roos, J.F. dos Santos, P.M.S.T. de Castro, Influence of the FSW clamping force on the final distortion and residual stress field, Mater. Sci. Eng. A, 538 (2012) 81-88. [7] A. Steuwer, M.J. Peel, P.J. Withers, Dissimilar friction stir welds in AA5083–AA6082: the effect of process parameters on residual stress, Mater. Sci. Eng. A, 441(1-2) (2006) 187-196. [8] L.N. Brewer, M.S. Bennett, B.W. Baker, E.A. Payzant, L.M. Sochalski-Kolbus, Characterization of residual stress as a function of friction stir welding parameters in oxide dispersion strengthened (ODS) steel MA956, Mater. Sci. Eng. A, 647 (2015) 313-321. [9] H. Papahn, P. Bahemmat, M. Haghpanahi, Effect of cooling media on residual stresses induced by a solid-state welding: underwater FSW, Int. J. Adv. Manuf. Technol., 83(5-8) (2016) 1003-1012. [10] V. Farajkhah, Y. Liu, Effect of clamping area and welding speed on the friction stir weldinginduced residual stresses, Int. J. Adv. Manuf. Technol., 90(1-4) (2017) 339-348. [11] J. Altenkirch, A. Steuwer, P.J. Withers, S.W. Williams, M. Poad, S.W. Wen, Residual stress engineering in friction stir welds by roller tensioning, Sci. Technol. Weld. Joining, 14(2) (2009) 185-192. [12] S.W. Wen, P.A. Colegrove, S.W. Williams, S.A. Morgan, A. Wescott, M. Poad, Rolling to control residual stress and distortion in friction stir welds, Sci. Technol. Weld. Joining, 15(6) (2010):440-447. [13] H.D. Hibbit, B.I. Karlsson, E.P. Sorensen, ABAQUS user manual, version 6.12. Simulia, Providence, RI, (2012). [14] X.K. Zhu, Y.J. Chao, Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel, J. Mater. Process. Technol., 146(2) (2004) 263-272. [15] H. Schmidt, J. Hattel, J. Wert, An analytical model for the heat generation in friction stir welding, Modell. Simul. Mater. Sci. Eng., 12(1) (2003) 143-157. [16] F. Al-Badour, N. Merah, A. Shuaib, A. Bazoune, Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes, J. Mater. Process. Technol., 213(8) (2013)1433-1439. [17] F. Al-Badour, N. Merah, A. Shuaib, A. Bazoune, Thermo-mechanical finite element model of friction stir welding of dissimilar alloys, Int. J. Adv. Manuf. Technol., 72(5-8) (2014) 607-617. | ||
Statistics Article View: 417 PDF Download: 344 |