
تعداد نشریات | 22 |
تعداد شمارهها | 485 |
تعداد مقالات | 5,052 |
تعداد مشاهده مقاله | 9,296,923 |
تعداد دریافت فایل اصل مقاله | 6,139,796 |
طراحی یک زنجیرهتأمین چهار سطحی دارو با در نظر گرفتن اهداف اقتصادی، اجتماعی و رضایت مناطق | ||
نشریه پژوهش های مهندسی صنایع در سیستم های تولید | ||
مقاله 1، دوره 7، شماره 15، اسفند 1398، صفحه 199-217 اصل مقاله (1.03 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22084/ier.2020.19597.1875 | ||
نویسندگان | ||
جلال رضایی نور* 1؛ مطهره هاشم پور2؛ امیرحسین اکبری3 | ||
1دانشیار گروه مهندسی صنایع، مدیر فناوری اطلاعات دانشگاه قم | ||
2دانشجوی کارشناسی ارشد مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه قم، قم، ایران | ||
3کارشناس ارشد مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه صنعتی قم، قم، ایران | ||
چکیده | ||
در این مقاله یک مدل جدید برنامهریزی چندهدفه برای طراحی یک شبکه زنجیرهتأمین چهار سطحی دارو در چند دوره و برای چند محصول فاسدشدنی توسعه داده میشود. سطوح زنجیره شامل تأمینکنندگان، تولیدکنندگان، مراکز توزیع و خردهفروشان است. این مدل به تصمیمگیری یکپارچه مسائل مکانیابی مراکز تولید و مراکز توزیع دارو، تخصیص بهینه آنها به یکدیگر بهمنظور حملونقل مناسب داروها در بین سطوح، تعیین مقدار بهینهی تولید و حملونقل در بین تسهیلات و نیز تعداد بهینهی استخدام و اخراج نیروی کار برای تولید بهینه محصولات دارویی کمک میکند. همچنین مراکز تولید و توزیع دارای سطح تکنولوژی مختلف جهت تأسیس هستند. اهداف مسئله شامل کاهش هزینههای زنجیره همراه با کاهش اختلاف بیکاری و تأمین دارو در بین مناطق مختلف و افزایش رضایت مناطق مختلف با توجه به اهمیت تأمین هرچه بیشتر دارو است. بهدلیل NP-hard بودن مسئله و عدم کارایی روشهای دقیق، یک روش فراابتکاری مبتنی بر الگوریتم ژنتیک برای حل مسئله معرفی و عملکرد آن در طیف گستردهای از مسائل نمونهای تکهدفه و دوهدفه بررسی میشود. نتایج نشان میدهد وجود هدف بیشینه کردن رضایت مناطق و کاهش اختلاف آن بین مناطق مختلف اهمیت بالایی در زنجیرهتأمین دارو دارد. علاوه بر آن، کاهش اختلاف بیکاری بین مناطق مختلف باعث بهبود سطح اشتغال و وجود تعادل در مسئولیتهای اجتماعی زنجیره میشود. همچنین الگوریتم پیشنهادی قادر است مسائلی با سایز بزرگ را هم بهصورت تکهدفه و هم دوهدفه درزمانی کم و جوابی کارا حل کند | ||
کلیدواژهها | ||
زنجیره تامین دارو؛ توسعه پایدار؛ مسئولیت اجتماعی؛ الگوریتم ژنتیک؛ نابرابری اجتماعی | ||
مراجع | ||
[1] Sabouhi, F., Pishvaee, M. S. and Jabalameli, M. S. (2018). “Resilient supply chain design under operational and disruption risks considering quantity discount: A case study of pharmaceutical supply chain”, Computers & Industrial Engineering, vol. 126: 657-672. [2] Jafar Nejad, H.A., Safari, A. Azar, S.A. Ebrahimi (2015). “Manage supply chain orders based on traditional costing approach and cost based on activity and compare them”, IQBQ, 2015. [3] Meijboom, B., Obel, B. (2007). “Tactical coordination in a multi-location and multi-stage operations structure: A model and a pharmaceutical company case”, Omega, vol. 35, no. 3: 258-273. [4] Eberle, L. G., Sugiyama, H. and Schmidt, R. (2014). “Improving lead time of pharmaceutical production processes using Monte Carlo simulation”, Computers & chemical engineering, vol. 68: 255-263. [5] Zahiri, B., Jula, P. and Tavakkoli-Moghaddam, R. (2018). “Design of a pharmaceutical supply chain network under uncertainty considering perishability and substitutability of products”, Information Sciences, vol. 423: 257-283. [6] Savadkoohi, E., Mousazadeh, M. and Torabi, S. A. (2018). “A possibilistic location-inventory model for multi-period perishable pharmaceutical supply chain network design”, Chemical Engineering Research and Design, vol. 138: 490-505. [7] Hansen, K. R. N. and Grunow M. (2015). “Planning operations before market launch for balancing time-to-market and risks in pharmaceutical supply chains”, International Journal of Production Economics, vol. 161: 129-139. [8] Jabbarzadeh, A., Haughton, M. and Pourmehdi, F. (2018). “A robust optimization model for efficient and green supply chain planning with postponement strategy”, International Journal of Production Economics, vol. 214: 266-283. [9] Settanni, E., Harrington, T. S. and Srai, J. S. (2017). “Pharmaceutical supply chain models: A synthesis from a systems view of operations research”, Operations Research Perspectives, vol. 4: 74-95. [10] Safarzadeh, S. and Rasti-Barzoki, M. (2019). “A game theoretic approach for assessing residential energy-efficiency program considering rebound, consumer behavior, and government policies”, Applied Energy, vol. 233: 44-61. [11] Mele, F. D., Kostin, A. M., Guillén-Gosálbez, G. and Jiménez, L. (2011). “Multiobjective model for more sustainable fuel supply chains. A case study of the sugar cane industry in Argentina”, Industrial & Engineering Chemistry Research, vol. 50, no. 9: 4939-4958. [12] Rashidi, K. and Saen, R. F. (2018). “Incorporating dynamic concept into gradual efficiency: Improving suppliers in sustainable supplier development”, Journal of Cleaner Production, vol. 202: 226-243. [13] Rusnac, C.-M., Baboli, A., Moyaux, T. and Botta-Genoulaz, V. (2012). “Downstream pharmaceutical supply chain reorganization by considering the sustainable development criteria”, IFAC Proceedings Volumes, vol. 45, no. 6: 528-533. [14] Pishvaee, M. S., Razmi, J. and Torabi, S. A. (2012). “Robust possibilistic programming for socially responsible supply chain network design: A new approach”, Fuzzy sets and systems, vol. 206: 1-20. [15] Bojarski, A. D., Laínez, J., Espuña, M. A. and Puigjaner, L. (2009). “Incorporating environmental impacts and regulations in a holistic supply chains modeling: An LCA approach”, Computers & Chemical Engineering, vol. 33, no. 10: 1747-1759. [16] Borumand, A. and Beheshtinia, M. A. (2018). “A developed genetic algorithm for solving the multi-objective supply chain scheduling problem”, The international journal of system, cybernetics and management science. vol. 47, no. 7: 1401-1419. [17] Sousa, R. T., Shah, N. and Papageorgiou, L. G. (2005). “Global supply chain network optimisation for pharmaceuticals”, Computer Aided Chemical Engineering, vol. 20: 189-1194. [18] Susarla, N. and Karimi, I. A. (2012). “Integrated supply chain planning for multinational pharmaceutical enterprises”, Computers & Chemical Engineering, vol. 42: 168-177. [19] Beheshtinia, M. A. and Ghasemi, A. (2017). “A multi-objective and integrated model for supply chain scheduling optimization in a multi-site manufacturing system”, Engineering Optimization. vol. 50, no. 9: 1415-1433 [20] Soysal, M., Bloemhof-Ruwaard, J. Haijema, M. R. and van der Vorst, J. G. (2015). “Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty” , International Journal of Production Economics, vol. 164: 118-133. [21] Taheri, S. M. R. and Beheshtinia, M. A. (2019). “A Genetic Algorithm Developed for a Supply Chain Scheduling Problem”, Iranian Journal of Management Studies (IJMS). vol. 12, no. 2: 107-132. [22] Stellingwerf, H., Kanellopoulos, M. A., van der Vorst, J. G. and Bloemhof, J. M. (2018). “Reducing CO 2 emissions in temperature-controlled road transportation using the LDVRP model”, Transportation Research Part D: Transport and Environment, vol. 58: 80-93. [23] Beheshtinia, M. A., Ghasemi, A. and Farokhnia, M. (2018). “Supply chain scheduling and routing in multi-site manufacturing system (case study: a drug manufacturing company)”, Journal of modelling in managemevol. 13, no.1: 27-49. [24] Cardoso, S. R., Barbosa-Póvoa, A. P. F. and Relvas, S. (2013). “Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty”, European Journal of Operational Research, vol. 226, no. 3: 436-451. [25] Saedi, S., Kundakcioglu, O. E. and Henry, A. C. (2016). “Mitigating the impact of drug shortages for a healthcare facility: an inventory management approach”, European Journal of Operational Research, vol. 251, no. 1: 107-123. [26] Timajchi, A., Al-e-Hashem, S. M. M. and Rekik, Y. (2018). “Inventory routing problem for hazardous and deteriorating items in the presence of accident risk with transshipment option”, International Journal of Production Economics. vol. 209: 302-315 [27] Sousa, R. T., Liu, S. L., Papageorgiou, G. and Shah, N. (2011). “Global supply chain planning for pharmaceuticals”, chemical engineering research and design, vol. 89, no. 11: 2396-2409. [28] Sundaramoorthy, A., Li, X., Evans, J. M. and Barton, P. I. (2012). “Capacity planning for continuous pharmaceutical manufacturing facilities”, in Computer Aided Chemical Engineering, vol. 31: Elsevier, 1135-1139. [29] Nematollahi, M. Hosseini-Motlagh, S.-M., Ignatius, Goh, J. M. and Nia, M. S. (2018). “Coordinating a socially responsible pharmaceutical supply chain under periodic review replenishment policies”, Journal of Cleaner Production, vol. 172: 2876-2891. [30] Fatemeh Jafarkhan, S. Y. (2015). “A Robust Mathematical Model and Heuristic Solution Algorithm for Integrated Production-Routing-Inventory Problem Of Perishable Products with Lateral Transshipment”, Journal of Industrial Engineering Research in Production Systems vol. 4, no.8: 195-211. [31] Raj, A., Biswas, I. and Srivastava, S. K. (2018). “Designing supply contracts for the sustainable supply chain using game theory”, Journal of Cleaner Production, vol. 185: 275-284. [32] Padhi, S. S., Pati, R. K., and Rajeev, A. (2018). “Framework for selecting sustainable supply chain processes and industries using an integrated approach”, Journal of Cleaner Production, vol. 184: 969-984. [33] Dehghanian, F., and Mansour, S. (2009). “Designing sustainable recovery network of end-of-life products using genetic algorithm”, Resources, Conservation and Recycling, vol. 53, no. 10: 559-570. [34] Fahimnia, B., and Jabbarzadeh, A. (2016). “Marrying supply chain sustainability and resilience: A match made in heaven”, Transportation Research Part E: Logistics and Transportation Review, vol. 91: 306-324. [35] Bhinge, R., Moser, R., Moser, E., Lanza, G., and Dornfeld, D. (2015). “Sustainability optimization for global supply chain decision-making”, Procedia CIRP, vol. 26: 323-328. [36] Kaur, H., Singh, S. P., Garza-Reyes, J. A., and Mishra, N. (2018). “Sustainable stochastic production and procurement problem for resilient supply chain”, Computers & Industrial Engineering. vol. 139: 105508 [37] Hutchins, M. J. and Sutherland, J. W. (2008). “An exploration of measures of social sustainability and their application to supply chain decisions”, Journal of Cleaner Production, vol. 16, no. 15: 1688-1698. [38] Mani, V., Gunasekaran, A. and Delgado, C. (2018). “Enhancing supply chain performance through supplier social sustainability: An emerging economy perspective”, International Journal of Production Economics, vol. 195: 259-272. [39] Mirzapour, Al-E-Hashem, S., Malekly, H. and Aryanezhad, M. (2011). “A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty”, International Journal of Production Economics, vol. 134, no. 1: 28-42. [40] Gholamian, N., Mahdavi, I., Tavakkoli-Moghaddam R. and Mahdavi-Amiri, N. (2015). “Comprehensive fuzzy multi-objective multi-product multi-site aggregate production planning decisions in a supply chain under uncertainty”, Applied soft computing, vol. 37: 585-607.
[41] Song, H., Huang H.-C. (2008). “A successive convex approximation method for multistage workforce capacity planning problem with turnover”, European Journal of Operational Research, vol. 188, no. 1: 29-48. [42] Ibaraki, T. K., N. (1988). “Resource allocation problems: algorithmic approaches”, MIT press. [43] H. J. H. (1975). “Adaptation in natural and artificial systems: an introductoryanalysis with applications to biology, control, and artificial intelligence”, USA:University of Michigan. [44] Holland, G. D., J. (1989). “Genetic algorithms in search, optimization andmachine learning”, Reading, MA: Addison-Wesley, vol. 44, no. 4: 397-406. [45] Devika, A. J. K., Nourbakhsh, V. (2014). “Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques”, European Journal of Operational Research, vol, 235, no. 3: 594-615. [46] Saman Hassanzadeh Amin, G. Z. (2013). “A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return”, Applied Mathematical Modelling. vol. 37, no. 6: 4165-4176. | ||
آمار تعداد مشاهده مقاله: 1,180 تعداد دریافت فایل اصل مقاله: 914 |