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Abstract

In this paper, the vibration characteristics of GFRP-stiffened pipes, in intact
and cracked conditions are investigated. The results have different applica-
tions, which the most important ones are optimized designs of such pipes and
diagnosis of the damage in them. Therefore, by Love theory, governing equa-
tions of motion for the GFRP-stiffened pipes were obtained. Having obtained
characteristic equation, the natural frequencies of the problem were calculated
for intact case. Then by modeling a sample of these pipes in the ANSYS soft-
ware and using Modal analysis, natural frequencies and related mode shapes
due to finite element method were calculated in cracked and intact condi-
tions. Then by using the experimental modal analysis method, the natural
frequencies of a sample, which was built similar to these pipes, were obtained
in cracked and intact conditions. The results of the analytical method, finite
element method, and the experimental modal analysis were compared and it
was shown that the results have a good compatibility. The same process was
performed on carbon fiber composites.

Nomenclature

u, v, z Displacement of plate in x, y and
z direction

u0, v0, w0 Displacement of middle plate in x,
y and z direction

Gxy, Gyz, Gxz Shear deformation modules Exx, Eyy, Ezz Elasticities modules
Aij , Bij , Dij

ĀIJ , B̄IJ , D̄IJ

ÂIJ , B̂IJ , D̂IJ

Coefficients of stiffness matrix σα, σβ , σαβ

σβα, σαz, σβz

(α, β, z)

Stresses of plate

Coordinate axes on top of plate
ε0α, ε0β , γ0αβ
γ0βα, γ0αz, γ0βz

Strains of mid-plate ϑxy, ϑyx, ϑyz

ϑzx, ϑyz, ϑzy

Poisson ratios

Kα,Kβ

Kαβ ,Kβα

Curvatures of the plate εα, εβ , γαβ
γβα, γαz, γβz

Strains of the plate

Nα, Nβ , Nαβ

Nβα, Qα, Qβ

Internal forces of the plate Mα,Mβ ,Mαβ

Mβα, Pα, Pβ

Internal moments on the plate

T Kinetic energy of plate qα, qβ , qz Forces on cylindrical shell
Ii Inertia momentum of plate ρ(K) Kth layer density
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φ Angle of fiber Ψα,Ψβ Rotation angle pf plate in x, y
Rα, Rβ Radius of thick plat W Work of external force
z Thickness of plate [Q̄ij ] Stress-strain matrix
{F} External force vector U Strain energy of plate
A,B Lame’s coefficients Ki,Kj Timoshenko stiffness coefficients
Umn, Vmn,Wmn

Ψαmn,Ψβmn

Amplitudes of displacements and
rotations in (m,n) mode

a
b

Length of crack
Width of crack

1. Introduction

With regard to the limits and special issues in the range
of high pressure with different diameters and shortage
of pipes with proper characteristics, recently a new pro-
duction process for the pipe manufacturing (composite-
steel) has been explored and introduced, which is the
latest pipe-making technology in the world; Mean-
while, the study of dynamic and vibration behavior
of composite-steel pipes is one of the most popular en-
gineering fields. The most important step in evaluat-
ing the dynamical behavior of this type of pipes is to
find the natural frequencies and the shape of the corre-
sponding modes. Because all the dynamic behaviors of
a structure are based on these two characteristics. So,
in order to design and construct an optimal structure,
these two features are important. One of the important
issues in dynamic analysis, and in particular obtain-
ing kinematic relations used in it, is the plate theory.
Many plate theories (thin, thick, deep, shallow, etc.)
reduce the three-dimensional elasticity problems into
two-dimensional ones. This is possible by removing the
coordinates which are perpendicular to the plate sur-
face. The development of plate equations in the last
century and the development of this kind of equations
in the field of layered composite sheets have started
since the midst of the 20th century. One of the studies
which used the 3D elasticity theory to analyze layered
plates can be found in Ye’s [1] book. Bhimaraddi [2]
obtained results based on the three-dimensional elas-
ticity theory for two-curved composite shallow shells.
Among other studies in this area, Wang and Lin [3], Xi-
aoyu [4], and Tsai [5] can be mentioned who worked on
3D elasticity theory on closed cylindrical shells. Three-
dimensional solutions of cylindrical shells with initial
stresses were performed by Xu et al. [6]. Ye and
Soldatos [7, 8] used the 3D elasticity theory for the
behavior of cylindrical shell with boundary conditions
of simple-fixed support. Ding and Tang [9] performed a
three-dimensional study on the free vibration of thick
composite cylindrical shell with fixed-fixed boundary
conditions. Chen and Shen [10], Chen et al. [11] con-
ducted a three-dimensional study on the free vibration
of isotropic cylindrical plates. Chern and Chao [12]
applied the three-dimensional theory to study the nat-
ural frequencies of the curved-layered plates; however,
the theory used for thick shell was different from other
shell and plate theories, and was presented for the first
time by Love [13] which used assumptions to analyze
the bending of shells. Qatu [14] carried out studies

that included a general hypothesis that was used in
many thick shell analyses. This is because the accept-
able levels of additional stresses for nonlinear terms
are large enough. Other extensive studies by Koiter
[15], Gol’denveizer [16], Noor and Burton [17] were con-
ducted on this subject that normal cross stresses and
strains in thick shells are smaller compared to other
stresses and strains. Many theories which are used in
shells are gained from Love theories. A lot of these
theories were expressed in the middle of the twentieth
century. For example, strain and displacement rela-
tions expressed by Naghdi and Berry [18] are in con-
tradiction with the motion of a rigid object. Since a
long time ago, especially in the recent decades, various
researches have been done experimentally or numeri-
cally in the field of layered composites, and in partic-
ular composite-protected pipes, which some of these
articles are mentioned below: Almeida et al. [19] nu-
merically and experimentally investigated the damage
and extinction of composite pipes, reinforced with car-
bon/ epoxy strands under external pressure. Üstün et
al. [20] investigated the effect of cracking on composite
pipes, reinforced by twisted epoxy/carbon nanoparti-
cles. Ribeiro et al. [21] conducted their research on
the intersectional impact analysis on composite cylin-
ders. Zhou et al. [22] conducted their research on
the experimental and numerical analysis of transverse
impact damage and the 3D transformation of circu-
lar composite pipes (circularly reinforced). Luo et al.
[23] analyzed the advanced failure and energy absorp-
tion testing of composite pipes under the axial impact
test. Sokolinsky et al. [24] investigated the failure of
composite-reinforced pipes and the effect of the gap
on structural failure. Hemmatnezhad et al. [25] per-
formed an experimental and numerical analysis of the
behavior of composite pipes of carbon- glass fibers un-
der free vibration. Yang et al. [26] conducted their
research on modal analysis on corrugated composite
pipes. Gurgen and Sofuglu [27] investigated vibration
characteristics of shear thickening fluid filled CFRP
tubes. The vibrational properties of the structures
were investigated with modal analysis, and the natu-
ral frequencies and damping ratios were calculated for
two different boundary conditions (single and double-
fixed ends). Capozucca and Magagnini [28] done an ex-
perimental investigation into the vibration response of
homogenous beams which are strengthened by CFRP
lamina and damaged by notch. The free vibration anal-
ysis of specimens were also carried out by verifying
responses using numerical modelling by the Finite Ele-
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ment Method (FEM). Two beam models, one with dou-
ble concentrated notches and one with diffused dam-
age, strengthened by epoxy resin in the notches and
with one unidirectional CFRP lamina at the intra-
dos were subjected to cycles of bending loading. Af-
ter each cycle of static loading the free vibration re-
sponse was experimentally evaluated considering the
beam hinge at the ends. The envelope of Frequency
Response Functions (FRFs) obtained by the dynamic
experimental tests was elaborated and the changes of
natural frequency values were then correlated to the
damage degree both to non-strengthened beam and to
the strengthened beam models also damaged by static
loading. Sit and Ray [29] investigated free vibration
characteristics of glass and bamboo epoxy laminates
under hygrothermal effect; experimental and numerical
models were developed to study the variation of vibra-
tion characteristics and other engineering properties of
both types of laminates in hygrothermal environment.
A finite element model based on Green-Lagrange type
nonlinear third-order shear deformation theory devel-
oped to account for the nonlinear behavior induced due
to hygrothermal effect.

According to the above literature survey in the
opinion of the authors, there is not any research about
dynamic characteristic of the steel pipes reinforced by
GFRP layers. Therefore, in this research this subject
was mentioned, and theoretically, numerically, and ex-
perimentally was investigated.

2. Theoretical Solution Method

2.1. The Theory of Thick Composite Sheets

The purpose of the present study is to obtain modal pa-
rameters (natural frequencies, frequency response func-
tion charts and mode shapes) of reinforced pipes with
composite fiber. Due to the fact that in this prob-
lem solving, the theory of composite shells was used,
first the composite sheet should be specified as a thick
or a thin plate. Fig. 1 shows a sample of steel pipe
reinforced by three-layer composite fiber and its cross-
section area.

The mentioned GFRP pipe specifications table is
as the following:
Table 1
Geometrical parameters of the present GFRP shell model.

Layer 1: Steel St-37
Inner radius (mm) 23.75
Outter radius (mm) 25
Layer thickness (mm) 1.25
Length of shell (mm) 300
Layer 2: E-Glass/Epoxy
Inner radius (mm) 25
Outter radius (mm) 25.5
Layer thickness (mm) 0.5
Length of shell (mm) 300
Composite fiber angle (θ◦) 30
Layer 3: E-Glass/Epoxy
Inner radius (mm) 25.5
Outter radius (mm) 26
Layer thickness (mm) 0.5
Length of shell (mm) 300
Composite fiber angle (θ◦) -30

Additionally, the mechanical specifications of the
used material in GFRP pipe layers are in Table 2.
Table 2
Material properties of the present GFRP shell model.

Layer 1: Steel St-37
Young’s modulus (GPa) E 210
Shear modulus (GPa) G 81
Poisson’s ratio v 0.3
Density (kg/m3) ρ 7850
Layer 2, 3: E- Glass/ Epoxy
Young’s Modulus (Gpa) E11,

E22,
E33

45, 10, 10

Shear Modulus (Gpa) G12,
G23,
G31

5, 3.8462, 5

Poisson’s ratio v12,
v23,
v31

0.3, 0.4, 0.3

Density (kg/m3) ρ 2000

Fig. 1. A view of the GFRP pipe and its cross-sectional area.
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Using the specifications stated in the Fig. 1 and
also Tables 1 and 2 and based on Love theory of thick
shells, the free vibrational solution and problem was
done to obtain the modal parameters of the GFRP
pipe. A composite cylindrical sheet which is located
on the coordinate system (α, β, n) is shown in the Fig.
2.

The strain-displacement relations are:

ε0α =
∂u0

∂α
, ε0β =

∂v0
∂β

+
w0

R
, ε0αβ =

∂v0
∂α

, ε0βα =
∂u0

∂β

γ0αz =
∂w0

∂α
+Ψα, γ0βz =

∂w0

∂β
− v0

R
+Ψβ , Kα =

∂Ψα

∂α
,

Kβ =
∂Ψβ

∂β
, Kαβ =

∂Ψβ

∂α
, Kβα =

∂Ψα

∂β
(1)

In the above relations, u0, v0, and w0 are the dis-
placements of the middle plane which is introduce as:

u0(α, β, t) =
M∑

m=0

N∑
n=0

Umn cos(αmα) sin(nθ) sin(ωmnt)

v0(α, β, t) =
M∑

m=0

N∑
n=0

Vmn sin(αmα) cos(nθ) sin(ωmnt)

w0(α, β, t) =
M∑

m=0

N∑
n=0

Wmn sin(αmα) sin(nθ) sin(ωmnt)

αm =
mπ

a
, ωmn = Natural frequency (2)

The stress-force relations of the cylindrical shell are: Nα

Nαβ

Qα

 =

∫ h
2

−h
2

 σα

σαβ

σαz

(
1 +

z

R

)
dz,

 Nβ

Nβα

Qβ

 =

∫ h
2

−h
2

 σβ

σβα

σβz

(
1 +

z

R

)
dz,

Mα

Mαβ

Pα

 =

∫ h
2

−h
2

 σα

σαβ

σαz

(
1 +

z

R

)
z dz

 Mβ

Mβα

Pβ

 =

∫ h
2

−h
2

 σβ

σβα

σβz

(
1 +

z

R

)
z dz

(3)

To calculate the moments and forces expressed in Eq.
(3), the following relationships are used:



Nα

Nβ

Nαβ

Nβα

Mα

Mβ

Mαβ

Mβα


=



Ā11 A12 Ā16 A16 B̄11 B12 B̄16 B16

A12 Â22 A26 Â26 B12 B̂22 B̄26 B̂26

Ā16 A26 Ā66 A66 B̄16 B26 B̄66 B̂66

A16 Â26 A66 Â66 B16 B̂26 B̄66 B̂66

B̄11 B12 B̄16 B16 D̄11 D12 D̄16 D16

B12 B̂22 B26 B̂26 D12 D̂22 D26 D̂26

B̄16 B26 B̄66 B166 D̄16 D26 D66 D66

B16 B̂26 B66 B̂66 D16 D̂26 D66 D̂66





ε0α
ε0β
ε0αβ
ε0βα
Kα

Kβ

Kαβ

Kβα


Qα

Qβ

Pα

 =

Ā55 A45 B̄55

A45 Â44 B45

B̄55 B45 D̄55

γ0αzγ0βz
Ψα

R



(4)

Fig. 2. A view of composite cylindrical shell and its cross-section.
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In Eq. (4), Nα, Nβ , Qα, and Qβ , are the verti-
cal forces in the main directions α and β. Also, Nαβ

and Nβα are the shear forces on the center plane, in
the footnote of which they are intended for the first
footprint perpendicular to the desired force and sec-
ond footer for tangent force. Mα, Mβ , Mαβ , Mβα, Pα

and Pβ are all the moments on the middle plane of the
cylindrical shell. Also, the coefficients A, B, and D are
introduced as:

Aij =
N∑

K=1

Q̄
(K)
ij (hk − hk−1)

Bij =
1

2

N∑
K=1

Q̄
(K)
ij (h2

k − h2
k−1) : i, j = 1, 2, 6

Dij =
1

3

N∑
K=1

Q̄
(K)
ij (h3

k − h3
k−1)



Aij =
N∑

K=1

KiKjQ̄
(K)
ij (hk − hk−1)

Bij =
1

2

N∑
K=1

KiKjQ̄
(K)
ij (h2

k − h2
k−1) : i, j = 4, 5

Dij =
1

3

N∑
K=1

KiKjQ̄
(K)
ij (h3

k − h3
k−1)

(5)



ĀIJ = Aij +
Bij

R
, ÂIJ = Aij −

Bij

R

B̄IJ = Bij +
Dij

R
, B̂IJ = Bij −

Dij

R
: i, j = 1, 2, 3, 4, 5, 6

D̄IJ = Dij +
Eij

R
, D̂IJ = Dij −

Eij

R

Also Ki and Kj are the coefficients of shear forces:

Ki = Kj =
4

5
(6)

Fig. 3, shows the cross-section of the GFRP-
stiffened pipe.

Fig. 3. The element cross section of the GFRP pipe.
Fig. 3, shows the cross-section of the GFRP-

stiffened pipe. According to Fig. 3, the coefficients
for Q̄

(K)
ij are extracted from the following formulas:

Q̄11 = Q11 cos
4 θ + 2(Q12 +Q26) cos

2 θ sin2 θ

+Q22 sin
4 θ

Q̄12 = (Q11 +Q22 − 4Q66) cos
2 θ sin2 θ

+Q12(cos
4 θ + sin4 θ)

Q̄13 = Q13 cos
2 θ +Q23 sin

2 θ

Q̄16 = −Q22 cos θ sin
3 θ +Q11 sin θ cos

3 θ

− (Q12 + 2Q66)(cos θ sin θ)(cos
2 θ − sin2 θ)

Q̄23 = Q23 cos
2 θ +Q13 sin

2 θ, Q̄33 = Q33

Q̄26 = Q11 cos θ sin
3 θ −Q22 sin θ cos

3 θ

− (Q12 + 2Q66)(cos θ sin θ)(cos
2 θ − sin2 θ)

Q̄36 = (Q13 −Q22) cos θ sin θ

Q̄66 = (Q11 +A22 − 2Q12) cos
2 θ sin2 θ

+Q66(cos
2 θ − sin2 θ)2

Q̄44 = Q44 cos
2 θ +Q55 sin

2 θ

Q̄55 = Q55 cos
2 θ +Q44 sin

2 θ

Q̄45 = (Q55 −Q44) cos θ sin θ

(7)

According to Table 2, the coefficients of Qij are ob-
tained using the following formulas:

Q11 = E11
1− ϑ23ϑ32

∆
, Q22 = E22

1− ϑ13ϑ31

∆

Q33 = E33
1− ϑ12ϑ21

∆
, Q44 = G23,

Q55 = G13, Q66 = G12,

Q12 = E11
ϑ21 + ϑ31ϑ23

∆
= E22

ϑ12 + ϑ32ϑ13

∆

Q13 = E11
ϑ31 + ϑ21ϑ32

∆
= E22

ϑ13 + ϑ12ϑ23

∆

Q23 = E11
ϑ32 + ϑ12ϑ31

∆
= E22

ϑ23 + ϑ21ϑ13

∆

∆ = 1− ϑ12ϑ21 − ϑ23ϑ32 − ϑ31ϑ13 − 2ϑ21ϑ32ϑ13

(8)

Substituting Eqs. (1) and (5) in the Eq. (4), the
forces and moments of the cylindrical thick shell are
obtained. Then, replacing the stresses obtained from
Eq. (4) in Eq. (3), the stresses on the sheet can be
obtained. In order to obtain the equations of motion,
the Hamilton principle which is describe as follow, is
used:

δ

∫ t2

t1

(T − U +W ) dt = 0 (9)
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In Eq. (9), T is kinetic energy, U is potential en-
ergy, and W is external work. Using the following re-
lations:

T =
1

2

∫
V

{u̇2 + v̇2 + ẇ2}dV

=
1

2

∫
α

∫
β

∫ h
2

−h
2

{
u̇2
0 + v̇20 + ẇ2

0 + z2(Ψ̇2
α + Ψ̇2

β + 2u̇0Ψ̇α

+ 2v̇0Ψ̇β)
}{

1 +
z

Rα

}{
1 +

z

Rβ

}
AB dα dβ dz

U =
1

2

∫
α

∫
β

{Nαε0α +Nβε0β +Nαβε0αβ +Nβαε0βα

+MαKα +MβKβ +MαβKαβ +MβαKβα +Qαγ0αz

+Qβαγ0βα + Pα
Ψα

Rα
+ Pβ

Ψβ

Rβ
}AB dα dβ

W =

∫
α

∫
β

{
qαu0 + qβv0 + qzw0 +mαΨα

+mβΨβ

}
AB dα dβ

[I1, I2, I3, I4, I5] =

N∑
K=1

∫ hK

hK−1

ρ(K)[1, z, z2, z3, z4] dz

(10)

and substituting the Eq. (10) in Eq. (9), the equations
of motion for the cylindrical thick shell are obtained as:

∂Nα

∂α
+

∂Nβα

∂β
+ qα = (Ī1ü

2
0 + Ī2Ψ̈

2
α)

∂Nβ

∂β
+

∂Nαβ

∂α
+ qβ = (Ī1v̈

2
0 + Ī2Ψ̈

2
β)

− ∂Nβ

R
+

∂Qα

∂α
+

∂Qβ

∂β
+ qz = (Ī1ẅ

2
0)

∂Mα

∂α
+

∂Mαβ

∂β
−Qα +mα = (Ī2ü

2
0 + Ī3Ψ̈

2
α)

∂Mβ

∂β
+

∂Mαβ

∂α
−Qβ +mβ = (Ī2v̈

2
0 + Ī3Ψ̈

2
β)

(11)

where

u0(α, β, z) =
∞∑

m=1

∞∑
n=1

Umn cos(αmα) sin(βnβ) sin(ωmnz)

v0(α, β, z) =
∞∑

m=1

∞∑
n=1

Vmn sin(αmα) cos(βnβ) sin(ωmnz)

w0(α, β, z) =
∞∑

m=1

∞∑
n=1

Wmn sin(αmα) sin(βnβ) sin(ωmnz)

Ψα(α, β, z) =
∞∑

m=1

∞∑
n=1

Ψαmn cos(αmα) sin(βnβ) sin(ωmnz)

Ψβ(α, β, z) =
∞∑

m=1

∞∑
n=1

Ψβmn sin(αmα) cos(βnβ) sin(ωmnz)

αm =
mπ

R
(m = 1, 2, . . .), βn =

nπ

L
(n = 0, 1, 2, . . .) (12)

By inserting the Eq. (12) inside (11) and using the
discrete Fourier transform, the vibrating equation of
the cylinder of a thick wall is obtained as follows:

[K] + (ωmn)
2[M ] = 0 (13)

In Eq. (13), [K] is stiffness matrix and [M ] is mass
matrix, which are defined as:

[K] =


K11 K12 K13 K14 K15

K12 K22 K23 K24 K25

K13 K23 K33 K34 K35

K14 K24 K34 K44 K45

K15 K25 K35 K45 K55



[M ] =


M11 M12 M13 M14 M15

M12 M22 M23 M24 M25

M13 M23 M33 M34 M35

M14 M24 M34 M44 M45

M15 M25 M35 M45 M55


(14)

The coefficients of the above matrices are obtained
as follows:

K11 = −Ā11α
2
m − Â66β

2
n

K12 = −(A12 +A66)αmβn

K13 =

[
A12

R

]
αm

K14 = −B̄11α
2
m − B̂66β

2
n

K15 = −(B12 +B66)αmβn

K22 = −Ā66α
2
m − Â22β

2
n − Â44

R

K23 =

[
Â22 + Â44

R

]
βn

K24 = −(B12 +B66)αmβn

K25 = −B̄66α
2
m +B22β

2
n +

Â44

R
(15)

K33 = −Ā55α
2
m − Â44β

2
n − Â22

R

K34 =

[
−Ā55 +

B12

R

]
αm

K44 = −Ā55 − D̄11α
2
m − D̂66β

2
n

K45 = −(D12 +D66)αmβn
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K55 = −Â44 − D̂66α
2
m − D̂22β

2
n

M11 = M22 = M33 = −
(
I1 +

I2
R

)

M14 = M25 = −
(
I2 +

I3
R

)

M44 = M55 = −
(
I3 +

I4
R

)
By placing the Eq. (15) in (13) and calculating the

following determinant, the natural frequencies of the
structure are obtained.

|[K] + (ωmn)
2[M ]| = 0 (16)

The free-free boundary conditions for the problem
are considered which is describe as:

at :x = 0 : Qx = Mx = u0 = v0 = 0

at :x = L : Qx = Mx = u0 = Nxy = 0
(17)

To obtain non-dimensional natural frequencies, the
following formula is used:

Ω = ωmnR

√
ρ(1− ϑ2)

E
(18)

In Eq. (18), Ω is the non-dimensional frequency,
ωmn is the complex natural frequency, R is the ra-
dius, ρ is the density, ϑ is the Poisson’s ratio and E is
the modulus of elasticity associated with the cylindrical
shell.

For investigating the crack effects in the mathemat-
ical modelling, the crack was considered as an open
crack. For this purpose, local flexibility coefficients
were added to the model, based on the work of Yu et.
al. [30]. In this model, the proposed equations consider
the influence of the crack orientation on the local flex-
ibility coefficient. An adaptive Simpson method was
used to calculate the local flexibility coefficients of a
cracked pipe.

The development of the crack in composites rein-
forced with brittle fibers is generally accompanied with
the rupture of single fibers, the exfoliation of broken
filaments of the matrix, the collapse of surrounding fil-
aments due to localized overloading, etc. The study
of the dynamic effects, related with the stress distri-
bution during rupture of fibers and their separation of
the matrix, gives new aspects about the interrelation
of these micro-mechanisms of fracture and allows the
development of algorithms that make computer simu-
lation possible.

3. Finite Element Analysis (FEA)

3.1. Simulation of GFRP Pipe

The modeling of an intact GFRP pipe with geometri-
cal and mechanical properties which are described in

Table 1 and 2 was done using ANSYS 18 software; this
model is shown in Fig. 4. The member of elements
were increased to 178502 to reach a convergence in the
results. The GFRP pipe was meshed with Quadrilat-
eral Dominant (Quad/Tri).

Fig. 4. Simulating a healthy and meshed GFRP pipe.

Fig. 5, shows the simulation of GFRP layers. Ac-
cording to this figure, one can see the orientation and
angle of fibers in two layers which are selected as +30◦

and −30◦.

3.2. Simulation of Cracked GFRP Pipe

In this section, a crack created on the GFRP pipe
model. The location of created crack is in the mid-
dle length of pipe. Also, the parameters of the crack
including length (a) and width (b) were selected based
on the analytical model [30] and are shown in Fig. 6.
Moreover, the depth of crack considered equal to the
thickness of pipe. Therefore, the crack was as part-
through type. Based on Figs. 6 and 7, the crack char-
acteristics are as follows:

1. It is transverse and has an elliptical shape.

2. The crack position is in the middle of the pipe,
150(mm).
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Fig. 5. A view of the GFRP pipe layers with a 30◦/− 30◦ composite fiber angle.

Fig. 6. Simulating a cracked and meshed GFRP pipe.

3. The bigger diameter of the oval: crack length:
(2a) = 41(mm) =

1

4
circumference of the pipe.

4. The smaller diameter of the oval: crack width:
(2b) = 2(mm)

4. Experimental Modal Analysis (EMA)

Modal analysis done in laboratory conditions for two
models of intact and cracked GFRP pipes separately.

To perform a modal test, first the manufactured
GFRP pipe has been meshed as shown in Fig. 1. The
number of available meshed elements 50 and the num-
ber of nodes were 55.

4.1. Modal Analysis of Healthy GFRP Pipes

According to Fig. 8, the healthy GFRP bounded in
the laboratory and the modal test done and the re-
sults were subsequently obtained. The pipe hung from
the fixture with two ropes and so Free-Free-boundary
condition was satisfied.

Using a modal hammer and a modal accelerometer,
which was connected to pipe, modal testing was done
using hammer routing method.

Fig. 7. Coordinate and dimensional of crack.

4.2. Modal Analysis of Cracked GFRP Pipe

As stated in Section 3.2, a crack was created using wire
cut machine tool on the GFRP pipe with specific di-
mensions and specifications. Then, modal testing ex-
periment was done on the specimen again under the
same conditions which is shown in Fig. 9. Based on
the above explanation, the created crack was a notch
and not an imperfection.
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5. Results and Discussion

The goal of this study is to analyze GFRP pipes
in both cracked and intact conditions by theoretical
method, software simulation, and laboratory modal ex-

periments and obtaining the modal characteristics of
the pipe. (natural frequencies, modal shape and fre-
quency response function). The results of the simula-
tions are shown in Table 3.

Fig. 8. Experimental modal analysis of healthy GFRP pipes.

Table 3
Natural frequencies and mode shapes for a Free-Free healthy and cracked GFRP.

Mode FEA healthy GFRP FEA Cracked GFRP Mode FEA healthy GFRP FEA cracked GFRP
mode (m,n) mode (m,n) mode (m,n) mode (m,n)

1 7

2 8

3 9

4 10

5 11

6 12
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Fig. 9. Experimental modal analysis of cracked GFRP
pipes.

The results of the experimental modal analysis in-
cluding natural frequency and damping ratio are pre-
sented in Tables 4 and 5 for healthy and cracked GFRP
respectively.
Table 4
Experimental natural frequencies and damping ratios for healthy
GFRP.

Mode (m,n)
Natural frequencies Damping ratio
(Hz) (%)

1 (1,2) 1825 0.57
2 (1,2) 1825 0.57
3 (1,2) 1862 0.13
4 (1,2) 1862 0.13
5 (2,2) 2201 0.62
6 (2,2) 2201 0.62
7 (1,0) 2908 0.72
8 (1,0) 2908 0.72

Furthermore, the comparison between the obtained
natural frequencies with the following three methods of
theoretical analysis, finite element method and exper-
imental modal analysis are presented in Tables 6 and
7:

Table 8 shows the difference between first four natu-
ral frequencies of healthy and cracked specimen GFRP
pipe quantitatively based on experimental modal anal-
ysis. According to the results of the natural frequencies
shown in Tables 6, 7 and 8, the following results have
been were obtained.

Table 5
Experimental natural frequencies and damping ratios for cracked
GFRP.

Mode (m,n)
Natural frequencies Damping ratio
(Hz) (%)

1 (1,1) 1751.33 0.56
2 (1,2) 1780.31 0.12
3 (1,2) 1795.62 0.52
4 (1,2) 1900.43 0.47
5 (1,2) 2095.20 0.61

According to Table 6, it is observed that some of
the natural frequencies obtained for a healthy GFRP
are repeated which is because of the axial symmetry
of GFRP pipe and geometrical symmetry. However,
according to Table 7, the reason for this is the pres-
ence of cracks in the pipe, which causes the body to
move out of the axial symmetry state. By compar-
ing Tables 6 and 7 together, it is concluded that the
presence of crack in the desired pipe reduces the nat-
ural frequencies, which affects the decrease of stiffness
of cracked pipe. Also, one can see that the repeated
natural frequency for the cracked pipe does not exist.
This is because of the presence of crack. By comparing
the three theoretical analysis methods, finite element
simulation and experimental modal analysis, it follows
that the percentage error of calculation in the results of
these three methods is low and this indicates the high
accuracy in the calculations and measurements. The
graphs of the frequency response functions related to a
healthy and cracked GFRP are expressed in Figs. 10
and 11.

Table 6
Comparison of the natural frequencies (Hz) of healthy GFRP under Free-Free boundary condition.

Healthy reinforced steel tube with glass fiber composites Comparison the percentage of errors of different methods together

Mode (m,n) Analytic FEA EMA Analytic-FEA (%) Analytic-EMA (%) FEA-EMA (%)
1 (1,2) 1810.42 1812.2 1825 0.09 0.80 0.70
2 (1,2) 1810.42 1812.2 1825 0.09 0.80 0.70
3 (1,2) 1842.34 1848.9 1862 0.35 1.06 0.71
4 (1,2) 1842.34 1848.9 1862 0.35 1.06 0.71
5 (2,2) 2145.41 2120.8 2201 0.16 2.60 2.43
6 (2,2) 2145.41 2120.8 2201 0.16 2.60 2.43
7 (1,0) 2782.36 2263.4 2908 0.54 4.51 3.95
8 (1,0) 2782.36 2263.4 2908 0.54 4.51 3.95
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Fig. 10. Frequency response function diagram of healthy GFRP pipe obtained by a) Finite element simulation
method, b) Experimental modal analysis method for the first and second natural frequencies.

Fig. 11. Frequency response function diagram of cracked GFRP pipe obtained by a) Finite element simulation
method, b) Experimental modal analysis method.
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Table 7
Comparison of the natural frequencies (Hz) of cracked GFRP
under Free-Free boundary condition.

Cracked reinforced steel tube with glass fiber composites
Mode (m,n) FEA EMA Error (%)
1 (1,1) 1758.8 1751.33 0.42
2 (1,2) 1811 1780.31 1.72
3 (1,2) 1812.4 1795.62 0.93
4 (1,2) 1848 1900.43 2.83
5 (1,2) 1854.7 2095.20 12.96

Table 8
Difference between natural frequencies of healthy and cracked
reinforced steel tube with glass fiber composites pipes.

Mode EMA EMA Difference
(healthy) (cracked) (Hz)

1 1825 1751.33 74
2 1862 1780.31 81.69
3 2201 1900.43 301
4 2908 2095.2 812.8

6. Conclusions

The purpose of this study was to obtain modal parame-
ters (natural frequencies, shape of mods and frequency
response diagrams) for a GFRP reinforced steel pipe in
two healthy and cracked conditions. The results were
analyzed in three ways: theoretical analysis, FEM and
experimental modal analysis were performed and the
results are presented in the fourth chapter of the study.

One of the topics discussed in this study was that
the different layers of composite fibers reinforcing the
desired steel pipe which would have an effect on the
results. The results of this study showed that the
carbon/epoxy composite fibers are more resistant to
glass/epoxy than hardwire, and this has a direct im-
pact on the modal parameters of the object. This effect
is that no matter how hard the object is, the natural
frequencies increase and this is observed in the results.
But, the reason for the use of glass/epoxy composite
fibers was that the fiber is more cost-effective in terms
of manufacturing cost compared to other composite
fibers, such as carbon/epoxy, and access to this type
of fiber is easier. Another important issue mentioned
in this study is the cracks’ discussion and its various
modes and their impact on the modal parameters of
the tube. According to the obtained results, the pres-
ence of cracks on each piece decreases the hardness,
and consequently the corresponding natural frequen-
cies decrease. According to the material in the fail-
ure mechanics, in the definition of the crack, only the
geometric shape can be resembled is an ellipse whose
small diameter tends to zero. The maximum length of
the crack should be 1

4
of the circumference of the ob-

ject. By examining different types of cracks (in terms

of dimensions, angles, and placement coordinates), the
results showed that the three-dimensional cracking had
the greatest effect on the modal parameters of the pipe.
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