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Abstract

In this study, a nonlinear superelastic bending of shape memory alloy (SMA)
beam with consideration of the material and geometric nonlinearity effects
which are coupled with each other, has been investigated. By using the
Timoshenko beam theory and applying the principle of virtual work, the
governing equations were extracted. In this regard, Von Karman strains were
applied to take the large deflections into account. Via Boyd-Lagoudas 3D
constitutive model, SMA was simulated, which was properly reduced to two
dimensions. With the development of an iterative nonlinear finite element
model, and for the purpose of obtaining characteristic of finite element
beam, the Galerkin weighted-residual method was applied. In this study, by
considering the different force and support conditions for the SMA beam,
their effects on the distribution of martensitic volume fraction (MVF) and
stress distribution were investigated. The obtained results indicate that the
magnitude of MVF and consequently the level of hysteresis increases, which
leads to the reduction of the modulus of elasticity and the strength of the
material and therefore the deflection of SMA beam increases consequently.
To validate the proposed formulation, the results were compared with other
experimental and numerical results and a good agreement was achieved
between outcomes.

Nomenclature

G Gibbs free energy bM Model parameter
σij Cauchy stress tensor µ1 Model parameter
εi,j Total strain tensor µ2 Model parameter
ν Poisson’s ratio bA Model parameter
εtij Transformation strain tensor Λ Transformation tensor
S̄ Effective compliance tensor σ′ Deviatoric stress tensor
c̄ Effective special heat σ̄′ Effective stress
ξ Martensitic volume fraction π General thermodynamic force
ρ Density ϕ Transformation function
T Current temperature T0 Reference temperature
f(ξ) Transformation hardening function E Youngs modulus
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ū0 Effective special internal energy at refer-
ence state

s̄0 Effective special entropy at the reference
state

ᾱ Effective thermal expansion coefficient ten-
sor

Y Critical value for thermodynamic force to
cause transformation

Hmax Maximum attainable transformation strain εt−r Transformation strain at the reversal point
ε−t−r Effective transformation strain at the rever-

sal point

1. Introduction

As far as smart materials exhibit special properties,
they are considered as proper choices for industrial ap-
plications in many engineering branches. Among the
different types of smart materials, SMAs have unique
characteristics such as pseudoelasticity behavior and
shape memory effect (SME) [1]. The SME recovers
the strain generated in the material through a ther-
mal phase transformation process. The pseudoelastic-
ity behavior of SMA allows the alloy memory to tol-
erate large deflection without causing permanent de-
formation. The occurrence of these behaviors results
from the phase transformation between the two main
phases of material martensite and austenite [2].

One of the main mode of application of structures
that are made of memory alloy is bending. Modeling
and bending analysis of memory rails have been the
subject of several other studies. Based on a finite strain
description, Jaber et al. [3] presented a finite element
model for SMA 3D-beam. A phenomenological correc-
tion model was introduced that was capable of simu-
lating some aspects of SMA thermodynamic behavior,
such as superelasticity and the one-way SME. In their
model, strain and temperature were control variables
which eliminate the need for transformation correctors
of finite element in the analysis. They compared the
obtained results with the experimental results of three-
point and four-point bending tests. Through the bend-
ing application which was adapted for the ambient tem-
perature conditions, Mineta et al. [4] investigated an
active guide wire. Their proposed micro-actuator had
a simple and flexible structure that was made of Ni-
Ti SMA with meandering shape and bias coil. Gillet
et al. [5] presented a numerical method for predicting
the behavior of SMA beam in the three-point bending
test. The result of their conducted experiments was
presented on Cu-based alloys to validate their numer-
ical results. Baghani et al. [6] proposed an analyti-
cal solution for shape memory polymer (SMP) Euler-
Bernoulli beam under bending. Further, in different
steps of an SMP cycle, they presented closed form ex-
pressions for internal variable variations, stresses, and
beam curvature distribution. In another study, Mirza-
eifar et al. [7] studied on superelastic bending of SMA
beams. Two different transformation functions were
considered: J2-based model and J2 − J1-based model.
Closed form expressions were used to analyze the stress
and MVF in the cross-section. They obtained the an-

alytical form of the bending moment-curvature rela-
tion. Botshekanan et al. [8] presented a Non-linear
dynamic analysis of a sandwich beam with pseudoelas-
tic SMA hybrid composite faces based on higher order
finite element theory. In their research, the changes of
the MVF and the properties of materials in different
points of the structure were considered continuously.
To solve the equations, an iteration method based on
transient nonlinear FEM formulation with a dynamic
phase transformation algorithm was presented. In ad-
dition, to simulate SMA behavior, the Brinson one-
dimensional model was applied.

Since the SMA properties are function of stress, it
can be therefore said that the properties of SMA beam
are variable in different points of the beam; hence, in
many studies, simplifications are applied. For exam-
ple, a continuous SMA beam was simulated with a
one-degree freedom model. In the present research,
first for the modeling of nonlinear behavior of SMA
beam, it was modeled continuously, and second, multi-
dimensional models were used. This study used the
Timoshenko beam theory which is a two-dimensional
model for beam modeling. Moreover, the nonlinear
strain field was used. Furthermore, SMA was applied
for the simulation via Boyd-Lagoudas 3D constitutive
model, which was properly reduced to two dimensions.
In this research, new analyses for SMA beam with dif-
ferent support and force conditions were performed,
and new results were presented in terms of distribu-
tion of stress, distribution of MVF, and displacements
of the beam.

2. Modeling of Shape Memory Alloy

In this study, the constitutive model for SMAs pro-
posed by Lagoudas [2] was used. This model is de-
scribed on the basis of Gibbs free energy. The total
Gibbs free energy is obtained through the following
equation:

G(σij : T : ξ : εtij) = −1

ρ

1

2
σ : S̄ : σ − 1

ρ
σ : [ᾱ(T − T0)]

+ c̄

[
(T − T0)− T ln

(
T

T0

)]
− s̄0T + ū0 + f(ξ) (1)

where σij , ε
t
ij , ξ, ρ, T , and T0 are Cauchy stress tensor,

transformation strain tensor, martensitic volume frac-
tion, density, current temperature and reference tem-
perature, respectively. S̄, ᾱ, c̄, s̄0, and ū0 are represen-
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tative of the material parameters, which are effective
compliance tensor, effective thermal expansion tensor,
effective special heat, effective special entropy at the
reference state and effective special internal energy at
reference state, respectively. Those are expressed as:

S̄(ξ) = SA + ξ(SM − SA) = SA + ξ∆S

ᾱ(ξ) = αA + ξ(αM − αA) = αA + ξ∆α

c̄(ξ) = cA + ξ(cM − cA) = αA + ξ∆α (2)

s̄0(ξ) = sA0 + ξ(sM0 − sA0 ) = sA0 + ξ∆s0

ū0(ξ) = uA0 + ξ(uM0 − uA0 ) = uA0 + ξ∆u0

where the superscripts A and M represent the
austenitic and martensitic phases, respectively.

Function f(ξ) is the transformation hardening func-
tion, which is used to consider the interactions be-
tween the austenite and martensitic phase, and the ex-
isting interactions in the martensitic phase itself. A
second-order polynomial form of this function for for-
ward transformation ξ̇ < 0 and reverse transformation
can be introduced as:

f(ξ) =


ρ

2
bMξ2 + (µ1 + µ2)ξ ξ̇ > 0

ρ

2
bAξ2 + (µ1 + µ2)ξ ξ̇ < 0

(3)

bM , bA, µ1, and µ2 are model parameters which are
achieved through the following forms:

bM = −∆s0(Ms −Mf )

bA = −∆s0(Af −As)

µ1 =
1

2
ρ∆s0(Ms +Af )− ρ∆u0

µ2 =
1

4
ρ∆s0(As −Af −Mf +Ms)− ρ∆u0

(4)

where Ms, Mf , As, and Af are martensitic start,
martensitic finish, austenitic start and austenitic fin-
ish temperature, respectively.

Entropy and strain relations are obtained as fol-
lows:

s = −∂G
∂T

ε = −ρ∂G
∂σ

(5)

By substituting Eq. (5) into Eq. (1), the entropy and
strain relations can be rewritten as below:

s =
1

ρ
σ : α+ c ln

(
T

T0

)
+ s0

ε = S : σ + α(T − T0) + εt
(6)

According to Eq. (6), stress tensor is given by:

σ = S−1 : [ε− α(T − T0)− εt] (7)

The relation between the evolution of the transforma-
tion strain and the evolution of martensitic volume
fraction during the forward and reverse transformation,
which is called the flow rule, can be postulated as:

ε̇t = Λξ̇ (8)

where Λ is the transformation tensor and is assumed
in the following form:

Λ =


3

2
Hmaxσ

′

σ̄′ ξ̇ > 0

Hmax εt−r

ε−t−r
ξ̇ < 0

(9)

where Hmax, σ′, σ̄′, εt−r, and ε−t−r are maximum at-
tainable transformation strain, deviatoric stress tensor,
effective stress, transformation strain at the reversal
point and effective transformation strain at the rever-
sal point, respectively.

π is the general thermodynamic force which is ex-
pressed as:

π(σ, T, ξ) = σ : Λ +
1

2
σ : ∆S : σ + σ : ∆σ(T − T0)

− ρ∆c

[
(T − T0)− T ln

(
T

T0

)]
+ ρ∆S0T − ρ∆u0 −

∂f

∂ξ
(10)

The critical values of the thermodynamic force for for-
ward and reverse transformation are Y and −Y , re-
spectively. Y is one of the model parameters and when
the transformation hardening function has second-
order polynomial form, it is obtained in this way:

Y =
1

4
ρ∆s0(Ms +Mf −Af −As) (11)

Based on what has been said, to describe the phase
transformation conditions in an SMA, the transforma-
tion function, (ϕ), is defined as:

ϕ =

 π − Y ξ̇ > 0, (A→M)

−π − Y ξ̇ < 0, (A→M)

(12)

When the forward and reverse transformation occur
in SMA, the condition ϕ = 0 is satisfied. Moreover,
when the MVF is constant, the condition ϕ < 0 is es-
tablished. These conditions are called as Kuhn-Tucker
conditions and written as follows:

ξ̇ ≥ 0; ϕ(σ, T, ξ) = π − Y ≤ 0; ϕξ̇ = 0

ξ̇ ≤ 0; ϕ(σ, T, ξ) = −π − Y ≤ 0; ϕξ̇ = 0
(13)
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3. Governing Equations

In this research, by using the Timoshenko Beam theory
(TBT) and applying the principle of virtual work, the
governing equations were extracted. In this theory, the
effects of shear deformation and bending moment are
considered simultaneously. Considering the nonlinear
behavior of the SMA, the amount of MVF varies from
point to point, thus the properties of the SMA beam
are different at each point of the beam. To accomplish
the previously stated goal, the SMA beam thickness
was divided into an acceptable number of layers, where
in each layer, through-the-thickness of the beam, the
MVF is assumed constant (Fig. 1).

Fig. 1. Geometry and coordinate system of the SMA
beam.

The displacement field of the beam in TBT is ob-
tained as follows [9]:

u1 = u0(x) + zϕx,

u2 = 0 (14)

u3 = w0(x)

where (u1 u2 u3) are the displacements of a point along
the (x y z) axes, (u0 w0) are the displacements of a
point on the mid-plane of an undeformed beam, and
ϕx is the rotation (about the y-axis) of a transverse
straight line.

With respect to the Von Karman strain relations,
the axial and shear components of the strain tensor are
expressed in the following equations:

εxx =
∂u1
∂x

+
1

2

(
dw0

dx

)2

+
du0
dx

+
1

2

(
dw0

dx

)2

+ z
dϕx
dx

= ε2xx + Zε1xx

εxz = ϕx +
dw0

dx
(15)

ε0xx =
du0
dx

+
1

2

(
dw0

dx

)2

ε1xx =
dϕx
dx

By using the principle of virtual displacements, the
necessary weak statements of the TBT, can be writ-
ten as:

δW ≡ δW1 + δWE = 0

δW1 =

∫ L

0

∫
A

(σxxδεxx + σxzδεxz)dAdx

=

∫ L

0

∫
A

(σxx(δσ
0
xx + zδε1xx) + σxzδεxz)dAdx

=

∫ L

0

∫
A

(
σxx

(
dδu0
dx

+
dw0

dx

dδw0

dx
+ z

dδϕx
dx

)
(16)

+ σxz

(
δϕx +

dδw0

dx

))
dAdx

δWE = −

[∫ L

0

qδw0dx+

∫ L

0

fδu0dx+
6∑

i=1

Qiδ∆i

]
where δW1 and δWE are the virtual strain energy
stored in beam and the virtual work done by exter-
nal load applied to beam, respectively. Further, σxx,
σxz, q, f , Qi, and δ∆i are the axial stress, the shear
stress, the distributed transverse load, the distributed
axial load, the generalized nodal forces and the virtual
generalized nodal displacements, respectively.

The axial and shear stress of k’th layer are defined
as below:

σk
xx(ξ) = Ek(ξ)

(
εkxx − αk(ξ)(T − T0)− εt

k

xx(ξ)
)

σk
xx(ξ) = Ek(ξ)

(
εkxx(ξ)− αk(ξ)(T − T0)− εt

k

xx(ξ)
) (17)

In Eq. (17), εkxx(ξ), ε
k
xz(ξ), ε

tk

xx(ξ), ε
tk

xz(ξ) and αk(ξ)
represent the total axial strain, total shear strain, ax-
ial transformation strain, shear transformation strain
and thermal expansion coefficient of k’th layer, respec-
tively. Also, Young’s modulus and Poisson’s ratio of
k’th layer are obtained as follows:

Ek(ξ) = EA + ξ(EM − EA)

vk(ξ) = vA + ξ(vM − vA)
(18)

The axial and shear transformation strain of k’th layer,
are expressed as:

εt
k

xx(ξ) = Hmax σk
xx(ξ)√

σk
xx(ξ)

2 + 3σk
xz(ξ)

2
ξ

εt
k

xz(ξ) = Hmax 3σk
xz(ξ)

2
√
σk
xx(ξ)

2 + 3σk
xz(ξ)

2
ξ

(19)

According to Eq. (17) and taking into account con-
stant temperature conditions (T = T0), the axial force
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resultant, moment resultant, and shear force resultant
can written as the following forms:

Nxx(ξ) =
NK∑
k=1

∫ zk+1

zk

bσk
xx(ξ)dz

=
NK∑
k=1

∫ xk+1

zk

bEk(ξ)
(
εkxx − εt

k

xx(ξ)
)
dz

Mxx(ξ) =

NK∑
k=1

∫ zk+1

zk

bσk
xx(ξ)zdz

=

NK∑
k=1

∫ zk+1

zk

bEk(ξ)
(
εkxx − εt

k

xx(ξ)
)
zdz

Qx(ξ) = Ks

NK∑
k=1

∫ zk+1

zk

bσk
xz(ξ)dz

= Ks

NK∑
k=1

∫ zk+1

zk

bEk(ξ)

2(1 + vk(ξ))

(
εkxz − εt

k

xz(ξ)
)
dz

(20)

where Ks is shear correction factor which gives 5/6 and
b is the width of cross-section of the beam.

Additionally, stiffness components of beam are ob-
tained through:

Axx(ξ) =
NK∑
k=1

∫ zk+1

zk

bEk(ξ)dz

Bxx(ξ) =
NK∑
k=1

∫ zk+1

zk

bEk(ξ)zdz

Dxx(ξ) =

NK∑
k=1

∫ zk+1

zk

bEk(ξ)z2dz

Sxx(ξ) =
NK∑
k=1

∫ zk+1

zk

bEk(ξ)

2(1 + vk(ξ))
dz

(21)

where Axx(ξ), Bxx(ξ), Dxx(ξ), and Sxx(ξ) are exten-
sional, extensional-bending, bending, and shear stiff-
nesses of the beam, respectively.

Substituting Eq. (21) in Eq. (20) and using Eq.
(15), Eq. (20) is rewritten as below:

Nxx(ξ) =

NK∑∫ xk+1

zk

bEk(ξ)

{(
du0(ξ)

dx
+

1

2

(
dw0(ξ)

dx

)

+ z
dϕx(ξ)

dx

)
− εt

k

xx

}
dz = Axx(ξ)

[
du0(ξ)

dx
+

1

2

(
dw0(ξ)

dx

)2
]

+Bxx(ξ)

(
dϕx(ξ)

dx

)
−Ns(ξ)

Mxx(ξ) =

Nk∑
k=1

∫ zk+1

zk

bEk(ξ)

{(
du0(ξ)

dx

+
1

2

(
dw0(ξ)

dx

)2

+ z
dϕx(ξ)

dx

)
− εt

k

xx

}
zdz (22)

= Bxx(ξ)

[
du0(ξ)

dx
+

1

2

(
dw0(ξ)

dx

)2
]

+Dxx(ξ)

(
dϕx(ξ)

dx

)
−Ms(ξ)

Qx(ξ) = Ks

NK∑
k=1

∫ zk+1

zk

bEk(ξ)

2(1 + νk(ξ))

{
ϕx(ξ) +

dw0(ξ)

dx
− εt

k

xz

}

= Sxx(ξ)

(
ϕx(ξ) +

dw0(ξ)

dx

)
−Qs(ξ)

where Ns(ξ), Ms(ξ) and Qs(ξ) are the axial force re-
sultant, moment resultant and shear force resultant,
resulting from the axial and shear components of the
transformation strain tensor, respectively and can be
expressed as:

Ns(ξ) =

NK∑
k=1

zk+1∑
zk

bEk(ξ)εt
k

xx(ξ)dz

Ms(ξ) =
NK∑
k=1

∫ zk+1

zk

bEk(ξ)εt
k

xx(ξ)zdz (23)

Qs(ξ) = Ks

NK∑
k=1

∫ zk+1

zk

bEk(ξ)

2(1 + νk(ξ))
εt

k

xz(ξ)dz

4. Finite Element Modeling

In this research, for the purpose of investigating SMA
beam bending, with respect to the nonlinearity of gov-
erning equations, which includes nonlinear material
and nonlinear geometry, an iterative nonlinear finite el-
ement model was developed. For the purpose of obtain-
ing characteristic of finite element beam, the Galerkin
weighted-residual method was used.

The displacement components of the points on the
center plane of the beam are estimated using the La-
grange interpolation functions and can be written as
follows [9]:

ue0(ξ) =
m∑
j=1

uj(ξ)ψ
(1)
j ,

we
0(ξ) =

n∑
j=1

wj(ξ)ψ
(2)
j , (24)

ϕex(ξ) =

p∑
j=1

sj(ξ)ψ
(3)
j
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where uj(ξ), wj(ξ) and sj(ξ) are axial displacement,
transverse displacement and rotation of element nodes,
respectively. Furthermore, in this study, for all three
expressions of Eq. (24), quadratic Lagrange interpo-
lation functions (m,n, p = 3) were used which are ob-
tained as follows:

ψ1(r) =
1

2
r(r − 1),

ψ2(r) = 1− r2 (25)

ψ3(r) =
1

2
r(r + 1)

According to Eq. (24) and δu0(ξ) =
∑m

j=1 ψ
(1)
j , it

can be concluded that δw0(ξ) =
∑n

j=1 ψ
(2)
j δwj(ξ) and

δϕx(ξ) =
∑p

j=1 ψ
(3)
j δsj(ξ) By substitution of Eq. (16),

expressions of Kαβ
ij (ξ) and F γ

i (ξ) (α, β, y = 1, 2, 3), are
expressed as follows:

K11
ij (ξ) =

∫ xb

xa

Ae
xx(ξ)

dψ
(1)
i

dx

dψ
(1)
j

dx
dx

K12
ij (ξ) =

1

2

∫ xb

xa

Ae
xx(ξ)

dw0(ξ)

dx

dψ
(1)
i

dx

dϕ
(2)
j

dx
dx

K13
ij (ξ) =

∫ xb

xa

Be
xx(ξ)

dψ
(1)
i

dx

dψ
(3)
j

dx
dx

K21
ij (ξ) =

∫ xb

xa

Ae
xx(ξ)

dw0(ξ)

dx

dψ
(1)
i

dx

dψ
(2)
j

dx
dx

K22
ij (ξ) =

∫ xb

xa

Se
xx(ξ)

dψ
(2)
i

dx

dψ
(2)
j

dx

+
1

2

∫ xb

xa

Ae
xx(ξ)

(
dw0(ξ)

dx

)2
sψ

(2)
i

dx

dψ
(2)
j

dx

K23
ij (ξ) =

∫ xb

xa

Se
xx(ξ)

dψ
(2)
i

dx
ψ
(3)
j dx

+

∫ xb

xa

Be
xx(ξ)

dw0(ξ)

dx

dψ
(2)
i

dx

dψ
(3)
j

dx
dx

K31
ij (ξ) =

∫ xb

xa

Be
xx(ξ)

dψ
(3)
i

dx

dψ
(1)
j

dx
dx

K32
ij (ξ) =

∫ xb

xa

Se
xx(ξ)ψ

(3)
j

dψ
(2)
i

dx
dx

+
1

2

∫ xb

xa

Be
xx(ξ)

dw0(ξ)

dx

dψ
(3)
i

dx

dψ
(2)
j

dx
dx

K33
ij (ξ) =

∫ xb

xa

(
De

xx(ξ)
dψ

(3)
i

dx
+
dψ

(3)
j

dx
+ (26)

Se
xx(ξ)ψ

(3)
j ψ

(3)
j

)
dx

F 1
i (ξ) =

∫ xb

xa

{
ψ
(1)
i f +Ns(ξ)

dψ
(1)
i

dx

}
dx

+Qe
1(ξ)ψ

(1)
i (xa) +Qe

4(ξ)ψ
(1)
i (xb)

F 2
i (ξ) =

∫ xb

xa

{
ψ2
i q +Qs(ξ)

dψ
(2)
i

dx
+Ns(ξ)

(
dw0(ξ)

dx

)
dψ

(2)
i

dx

}

F 3
i (ξ) =

∫ xb

xa

{
Qs(ξ)ψ

(3)
i +Ms(ξ)

dψ
(3)
i

dx

}
dx

+Qe
3(ξ)ϕ

(3)
i (xa) +Qe

6(ξ)ψ
(3)
i (xb)

where generalized nodal forces are given by:

Q1(ξ) = −Nxx(ξ)(0)

Q4(ξ) = Nxx(ξ)(L)

Q2(ξ) = −

[
ϕx(ξ) +Nxx(ξ)

∂w0(ξ)

∂x

]
x=0

,

Q5(ξ) =

[
ϕx(ξ) +Nxx(ξ)

∂w0(ξ)

∂x

]
x=L

Q3(ξ) = −Mxx(ξ)(0),

Q6(ξ) =Mxx(ξ)(L)

(27)

5. Numerical Results and Discussion

In this section, the numerical results of bending of SMA
beam under different loading and unloading conditions
and different support conditions are presented in con-
stant temperature conditions (T = T0 = 300K). To val-
idate the applied formulation of the present study, the
problems of three-point bending and cantilever beam
bending were modeled and the outcomes were com-
pared with the experimental and numerical results pre-
sented by Mirzaeifar et al. [7].

The properties of the Ni-Ti alloy used in the present
work are presented in Table 1 [10].

To investigate the convergence of the mesh, the
hinged-hinged beam with the length of 100mm and the
rectangular cross-section with the height of 10mm and
the width of 1.5mm was applied. Moreover, to dis-
crete width of cross-section, k = 35 layers was selected.
Then the beam, which was subjected to the distributed
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transverse load q0 = 12
KN

m
, was loaded and unloaded

in the number of different elements. The convergence
criterion was chosen for difference of deflections, less
than 1.6×10−5m. Finally, the total of 16 second-order
elements were selected.

Table 1
Material parameters of Ni-Ti SMA used in the present work.

Material parameter Value (unit)
H 0.05
As 272.7K
Af 281.6K
Ms 254.9K
Mf 238.8K
vA = vM 0.42
EA 72GPa
EM 30GPa
ρcA = ρcM 2.6× 106J/(m3K)
(dσ/dT )A 8.4× 106J/(m3K)
ρ∆s0 = −H(dσ/dT )A −0.42× 106J/(m3K)
∆c 0

5.1. Validation

In order to validate the proposed formulation, the re-
sults of the simulation of the three-point bending test
and the bending of cantilever beam were compared
with the results presented by Mirzaeifar et al. [7].

5.1.1. Three-point Bending Test

In this test, loading and unloading of the hinged-hinged
SMA beam, with the length of 170mm and the rect-
angular cross-section with the height of 3mm and the
width of 7.5mm, subjected to the transverse load ap-
plied in the middle of the beam was investigated. In or-
der to provide constant temperature conditions, load-
ing and unloading were done incrementally.

Fig. 2 shows the non-dimensional load-deflection
results of the beam using the two-dimensional nonlin-
ear finite element model (NL-FEM-2D) presented in
this study and the experimental and numerical results
presented by Mirzaeifar et al. [7]. As it is shown in
this figure, at the loading phase the outcomes of the
NL-FEM-2D model are very close to the experimental
results. However, there is some differences between the
results at the unloading phase. This difference results
from the fact that the proposed constitutive equations
cannot properly predict the stress-strain conditions at
the unloading phase and the difference becomes even
greater when the material starts the unloading phase
before it fully reaches the martensitic phase. In con-
trast, by increasing the cross-section thickness and
modifying the transformation hardening function, the
observed difference in the unloading phase can be re-
duced. The results show that the NL-FEM-2D model
can predicts material behavior better than J2 model

does, in both loading and unloading phases. The pre-
sented model is closer to the experimental results than
the J2 − J1 model.

Fig. 2. Non-dimensional load-deflection results ob-
tained from three-point bending test and theoretical
solutions.

In this section, the SMA beam with the length
of 100mm and the rectangular cross-section with the
height of 10mm and the width of 1.5mm, which was
subjected to the transverse load at the free end of the
beam, is simulated. In order to provide constant tem-
perature conditions, loading and unloading were done
incrementally. To this end, the final load of F = 210N
was applied to the beam at 42 steps, with each step
adding the value of 5N to the amount of loading. Sim-
ilarly, for the unloading phase, at each step, the value
5N was substracted from the amount of unloading.

Fig. 3 and Fig. 4 respectively indicate the results of
the distribution of normal stress and the MVF at the
clamped edge in correspondence with the end of the
loading, along with the numerical results presented by
Mirzaeifar et al. [7]. As can be seen in Fig. 3, the max-
imum value of normal stress occurred in the upper and
lower edges of the cross-section. While the level of nor-
mal stress in the core of the beam is negligible. Based
on what has been said, Fig. 4 can be interpreted in
this way that maximum stress occurs in the upper and
lower edges of the cross-section, where consequently the
most phase transformation is seen. On the other hand,
by moving toward the core of the beam, with decrease
in the stress level, the phase transformation is reduced
such that the MVF in the core of the beam is zero.
The results show that the outcomes of the formulation
presented in this study with other numerical analyses
are in good agreement.

5.2. Other Results

In this section, other results of SMA beam bending are
presented. The dimensions of the beam used in this
section are similar to the dimensions of the beam men-
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tioned in Section 5.2.1.

Fig. 3. Normal stress distribution through-the-
thickness of the cantilever SMA beam at the clamped
edge (corresponding to the end of the loading phase).

Fig. 4. MVF distribution through-the-thickness of
the cantilever SMA beam at the clamped edge (corre-
sponding to the end of the loading phase).

5.2.1. An Investigation of Different Support
Conditions of SMA Beam

In this section, the mentioned SMA beam was sub-

jected to the distributed transverse load q0 = 23
KN

m
at different support conditions. In order to provide
quasi-static conditions, the final load was subjected
to the beam as a series of small loads. Figs. 5 to
10 show the distribution of the MVF along the length
and through-the-thickness of the SMA beam for differ-
ent support conditions, which the results correspond
to the end of loading phase.

Fig. 5 shows that the maximum phase transfor-
mation occurs in the in the upper and lower edges of
the clamped cross-sections of the beam, also the mid-
section of the beam length, but is much less than the
phase transformation at the clamped cross-sections. In
addition, due to the nonlinearity of the strain field, in
the near sections of two ends of the beam, the phase

transformation at the upper edge of the beam which
is under tensile stress is greater than the lower edge of
the beam which is under compression stress. In other
words, the distribution of stress in the beam is not
symmetric. This state also occurs at the mid-section
of the beam with the difference that this time the lower
edge, which is under tensile stress, shows a greater
phase transformation. By moving toward the core of
the beam, the phase transformation decreases, with de-
crease in stresses, so that the layers around the core of
the beam completely remain in the austenite phase.

Fig. 5. Distribution of MVF for all points along the
length and the through-the-thickness of the clamped-
clamped SMA beam (corresponding to the end of the
loading phase).

In Fig. 6, the support conditions are similar to
Fig. 5 except that the nonlinear component of the
strain field is neglected in the modeling of the beam.
It causes a symmetric distribution of stress and, as a
result, the symmetric distribution of the MVF in the
cross-sections of the middle and two ends of the beam.

Fig. 6. Distribution of MVF for all points along the
length and the through-the-thickness of the clamped-
clamped SMA beam by considering the linear strain
field (corresponding to the end of the loading phase).
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In this part one of the clamped supports was re-
placed with a pinned support, and as can be seen in
Fig. 7, it increased the asymmetric distribution of
MVF through-the-thickness of the beam. Increasing
the deflection of the beam, increases the phase trans-
formation in the layers of cross-sections of clamped end
and middle of the beam.

Fig. 7. Distribution of MVF for all points along the
length and the through-the-thickness of the clamped-
pinned SMA beam (corresponding to the end of the
loading phase).

For more study, one of the clamped supports of Fig.
5 was replaced with a hinged support. As can be seen
in Fig. 8 by removal of in-plane forces in one of the
supports, although increasing the deflection increases
the stress and MVF at the middle and clamped cross-
sections of beam, it leads to the loss of the effect of
the nonlinear strain field components and reveals the
symmetric distribution of MVF through-the-thickness
of the beam.

Fig. 8. Distribution of MVF for all points along the
length and the through-the-thickness of the clamped-
hinged SMA beam (corresponding to the end of the
loading phase).

As can be seen in Fig. 9, in the case of pined-pined

supporting, the phase transformation occurs only at
the middle of the beam although the effect of the non-
linear strain field is as well apparent in the asymmetric
distribution of the MVF.

Fig. 9. Distribution of MVF for all points along the
length and the through-the-thickness of the pinned-
pinned SMA beam (corresponding to the end of the
loading phase).

Finally, for pinned-hinged and hinged-hinged sup-
port conditions the same results were obtained as
shown in Fig. 10.

Fig. 10. Distribution of MVF for all points along the
length and the through-the-thickness of the hinged-
hinged SMA beam (corresponding to the end of the
loading phase).

The deflection of the beam neutral axis is shown in
Fig. 11 for different support conditions. As can be seen
in the figure, the largest and smallest deflections are
related to the hinged-hinged and the clamped-clamped
beam, respectively. In asymmetric support conditions,
the maximum deflection goes toward the support that
has more degree of freedom.
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Fig. 11. Non-dimensional deflection of neutral axis
of SMA beam for different support conditions (corre-
sponding to the end of the loading phase).

5.2.2. Different Force Conditions of SMA Beam

In this section, further results are presented for the
loading of cantilever beam which was mentioned in
section 5.1.2. To this end, the behavior of the SMA
beam at five forces of 210N, 175N, 125N, 75N, and
25N in both loading and unloading phases were inves-
tigated separately. Figs. 12 to 17 show the distribu-
tion of stress through-the-thickness of the beam at the
clamped cross-section of beam for different force con-
ditions during loading and unloading phases.

The distribution of normal stress through-the-
thickness of the beam in the loading steps is shown
in Fig. 12. As can be seen for the forces of 75N and
25N, where there is no phase transformation in the
SMA beam, the distribution of stress is linear through-
the-thickness of the beam. With the increase in force
and the onset of the phase transformation in the SMA
beam, the nonlinear distribution of stress intensifies.
With increasing force, variation of stress increases at
the upper and lower edges as well.

Fig. 13, similar to Fig. 12, shows the distribution of
normal stress through-the-thickness of the beam, with
the difference that the unloading phase is considered
this time. As can be seen in the three forces of 210N,
175N, and 125N, the SMA beam is being elastically
unloaded and no phase transformation occurs in the
material, therefore the distribution of stress in the lay-
ers is the same and only the stress level is reduced.
Another important point is to compare the SMA beam
behavior in the 75N force in loading and unloading
phases, which shows that during the loading the phase
transformation has not yet occurred, but during the
unloading phase, the phase transformation is seen in
this force. In both loading and unloading phases, the
stress decreases by moving toward the core of the beam
through-the-thickness of the beam as well.

Fig. 12. Normal stress distribution through-the-
thickness of the cantilever SMA beam at the clamped
edge for different force conditions (corresponding to the
loading phase).

Fig. 13. Normal stress distribution through-the-
thickness of the cantilever SMA beam at the clamped
edge for different force conditions (corresponding to the
unloading phase).

Fig. 14 and Fig. 15 show the distribution of shear
stress through-the-thickness of the beam in loading and
unloading steps, respectively. In elastic conditions, the
shear stress in the SMA beam is constant. When the
phase transformation occurs, the shear stress distribu-
tion becomes nonlinear. By moving toward the core of
the beam through-the-thickness of the beam, the shear
stress increases. It intensifies with increasing phase
transformation in material.

Fig. 16 and Fig. 17 show the distribution of
Von Mises stress through-the-thickness of the beam for
loading and unloading phases, which represent the si-
multaneous effects of normal stress and shear stress in
stress distribution. As it is seen, in cases where the
level of force applied for phase transformation is not
sufficient, the Von Mises stress in the middle layer is
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close to zero. In contrast, by increasing the force, the
intensity of the shear stress increases and causes the
Von Mises stress, in the middle layer of the , to be-
come non-zero. Moreover, the fractures seen in the
stress distribution diagrams indicate the occurrence of
a phase transformation in SMA beam.

Fig. 14. Shear stress distribution through-the-
thickness of the cantilever SMA beam at the clamped
edge for different force conditions (corresponding to the
loading phase).

Fig. 15. Von Mises stress distribution through-the-
thickness of the cantilever SMA beam at the clamped
edge for different force conditions (corresponding to the
loading phase).

6. Summary and Conclusions

In this research, the nonlinear superelastic bending of
SMA beam with consideration of the material and ge-
ometric nonlinearity effects, which were coupled to-
gether, was investigated. For modeling of SMA, the
Boyd-Lagoudas 3D model, which were properly re-
duced to two dimensions, were used. Due to the non-
linearity of the SMA, the iterative nonlinear finite el-

ement model of two dimensional (NL-FEM-2D model)
was presented for SMA beam modeling. The study of
the simultaneous effects of large strains and property
changes in the whole beam on the superelastic bending
of SMA beam, is one of the most important results of
this research as well. The most important results are
as follows:

Fig. 16. Shear stress distribution through-the-
thickness of the cantilever SMA beam at the clamped
edge for different force conditions (corresponding to the
unloading phase).

Fig. 17. Von Mises stress distribution through-the-
thickness of the cantilever SMA beam at the clamped
edge for different force conditions (corresponding to the
loading phase).

• By applying the external force sufficiently large
to the beam, a phase transformation in the mate-
rial and, accordingly, non-zero MVF are resulted.

• As the load increases, the MVF and consequently,
the level of hysteresis increases, which decreases
the modulus of elasticity and strength of the ma-
terial and increases the deflection of SMA beam.

• Since the properties of the memory alloy are
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stress-related, it can be said that the properties
of SMA beam are variable in different points of
the SMA beam, and as a result, the material
exhibits non-homogeneous behavior when sub-
jected to bending load.

• The numerical method presented in this research
can be a suitable alternative for expensive exper-
imental experiments and complex calculations.

As far as only superelastic behavior of the SMA beam
was investigated in this study, by considering the ther-
mal effects of the equations and analyzing the thermo-
mechanical effects of the SMA beam, it is possible to
obtain more complete results.
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