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Abstract

The effect of exponential stress resultant on buckling response of functionally
graded rectangular plates based on exponential shear deformation theory
is investigated in this paper. In exponential shear deformation theory,
exponential functions are used in terms of thickness coordinate to include
the effect of the transverse shear deformation and rotary inertia. The
material properties of the functionally graded plate are assumed to vary
according to a power low form according to the thickness direction. The
equations of motions are derived based on Hamiltons principle. To validate
the formulations, present results in specific cases are compared with available
results in literature and good agreement could be seen. Finally, the influence
of different parameters like power law indexes, aspect ratio, and the thickness
ratio on the non-dimensional critical buckling load of rectangular FG plates
are presented and discussed in detail.

Nomenclature

a Length of the plate b Width of the plate
h Thickness of the plate ϑ Poisson’s ratio
E Young’s modulus G Shear modulus
ρ Mass density g Power law index
u Displacement in the x1 direction v Displacement in the x2 direction
w Displacement in the x3 direction εii Normal strains
γij Shear strains σij Normal stresses
τij Shear stresses δ Variation operator
U Strain energy of the plate W Work done by external forces
N2 In plane loads perpendicular to the edges x2 = 0, b N1 In plane load perpendicular to the edges x1 = 0, a

T Kinetic energy of the plate λmn Natural frequency of the plate
[K] Stiffness matrix [Kg] Stiffness matrix related to the in-plane forces
Ncr Critical buckling load

1. Introduction

Functionally graded materials (FGMs) are compos-
ite materials intentionally designed so that they pos-
sess desirable properties for specific applications, espe-
cially for aircrafts, space vehicles and other engineer-

ing structures under high-temperature environments.
FGMs are heterogeneous composite materials in which
the material properties vary continuously from one in-
terface to the other. Those are achieved by gradu-
ally varying volume fraction of constituent materials.
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The advantage of using these materials is that they
can survive the high thermal gradient environment,
while maintaining their structural integrity. FGMs
were initially designed as thermal barrier materials for
aerospace structural applications and fusion reactors.
Now they are developed for the general use as struc-
tural components in high-temperature environments.
Typically, a FGM is made of a ceramic and a metal for
the purpose of thermal protection against large tem-
perature gradients. The ceramic material provides the
high-temperature resistance due to its low thermal con-
ductivity while the ductile metal constituent prevents
fracture due to its greater toughness. Reissner [1] de-
veloped a stress based FSDT which incorporates the
effect of shear and Mindlin [2] employed displacement
based approach. In Mindlin’s theory, transverse shear
stress is assumed to be constant through the thickness
of the plate, but this assumption violates the shear
stress free surface conditions on the top and bottom
surfaces of the plate. Mindlins theory satisfies consti-
tutive relations for transverse shear stresses and shear
strains by using shear correction factor. Mokhtar et
al. [3] studied buckling response of S-FGM plates in
thermal environment according to first order shear de-
formation theory. In their study material properties
varied smoothly according to thickness direction based
on Sigmond distribution. Şimşek and Reddy [4] inves-
tigated buckling of functionally graded material plates
based on Higher order shear deformation plate theory.
Matsunaga [5] studied the vibration and buckling re-
sponse of functionally graded plates by taking into ac-
count the influence of transverse shear, normal defor-
mations, and rotatory inertia. By using the method
of power series expansion of displacement components,
a set of functionally graded (FG) plates was derived
using Hamiltons principle. Yahia et al. [6] analyzed
the wave propagation in functionally graded plates ac-
cording to higher order shear deformation plate theory.
Malekzadeh and Alibeygi [7] studied the free vibration
of functionally graded arbitrary straight-sided quadri-
lateral plates under the thermal environment and based
on the first-order shear deformation plate theory. The
differential quadrature method was adopted to dis-
cretize the equilibrium equations. Ungbhakorn and
Wattanasakulpong [8] presented thermo-elastic vibra-
tion response of functionally graded plates caring dis-
tributed patch mass-based on third order shear de-
formation theory. The solutions were obtained using
the energy method. Furthermore, the forced vibration
analysis with external dynamic load acting on the sub-
domain of the patch mass was discussed. Reddy [9] in-
vestigated buckling analysis of simply supported func-
tionally graded plates based on higher order shear de-
formation theory (HSDT). Sayyad and Ghugal [10] pre-
sented the bending and free vibration of thick isotropic
rectangular plates by using Exponential shear defor-
mation theory. In their work a displacement based

on Exponential shear deformation theory (ESDT) was
used for the bending and free vibration analysis of thick
isotropic square and rectangular plates containing ef-
fect of transverse shear deformation and rotary iner-
tia. The displacement field of the theory contains three
variables like in the first order shear deformation plate
theory. Khorshidi [11] studied a theory to calculate
the natural frequencies of rectangular plate partially
contacting bounded fluid in the bottom and vertical
direction using the Rayleigh-Ritz method. In their de-
veloped model, the von Karman linear strain displace-
ment relationships were used in order to obtain the
kinetic and strain energies of the plate. Senthilnathan
et al. [12] used Reddy theory to present a simplified
higher order theory in which a further reduction of the
functional degree of freedom was introduced by split-
ting up the transverse displacement in to bending and
shear contributions. Khorshidi and Khodadadi [13] in-
vestigated closed-form solution for out-of-plane vibra-
tion of rectangular plates via trigonometric shear de-
formation theory. Khorshidi and Pagoli [14] studied
analytical solution for sound radiation of vibrating cir-
cular plates coupled with piezoelectric layers. Thai and
Choi [15] presented size-dependent functionally graded
material for Kirchhoff and Mindlin plate models, ge-
ometric nonlinearity, and material variation through
the thickness of the plate. The equations of motion
were derived from Hamiltons principle based on the
modified Couple stress theory, Von Karman nonlinear
strains, and Power Law variation of materials through
the thickness. Analytical solutions for the static bend-
ing, buckling, and free vibration problems were pre-
sented for a plate with all simply supported boundary
conditions to accentuate the effects of material length
scale parameter on the deflection, buckling load, and
frequency. Khorshidi and Farhadi [16] performed hy-
drostatic vibration analysis of a laminated composite
rectangular plate partially contacting with a bounded
fluid. In their research, natural frequencies of the plate
coupled with sloshing fluid modes were calculated us-
ing Rayleigh-Ritz method based on minimizing the
Rayleigh quotient.

In the present research, buckling response of func-
tionally graded plate according to exponential shear
deformation theory is investigated. In the exponen-
tial shear deformation theory exponential functions are
used in the thickness direction to include the influence
of transverse shear deformation and rotary inertia. It
is supposed that the material properties are changing
through the thickness direction according to the power
law distribution. The results of present work can be
used as benchmarks for future studies.

2. Equations and Mathematics

Consider a flat rectangular FG-plate of length a, width
b, and total thickness h and mixture of functionally
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graded materials through the thickness as shown in Fig.
1. The plate is under in-plane loads perpendicular to
the edges x1 = 0, a and x2 = 0, b. The properties
of the plate were assumed to vary through the thick-
ness of the plate according to a power-law distribution
of the volume fractions of two materials between the
two surfaces. In fact, the top surface (x3 = h/2) of
the plate was ceramic-rich whereas the bottom surface
(x3 = −h/2) was metal-rich.

Fig. 1. Geometry of an FGM plate.

Poisson’s ratio ϑ was assumed to be constant and
was taken as 0.3 throughout the analysis. Young’s
modulus and mass density were assumed to vary con-
tinuously through the plate thickness as [9];

E(x3) = (Ec − Em)V (x3) + Em (1)

ρ(x3) = (ρc − ρm)V (x3) + ρm (2)

V (x3) =

(
x3
h

+
1

2

)g

(3)

where g is power law index and takes only positive val-
ues. According to Eqs. (1) and (2) when the power
law index g approaches zero or infinity, the plate is
isotropic composed of fully ceramic or metal respec-
tively. Typical values for metal and ceramics used in
the FG plate are listed in Table 1.

Table 1
The material properties of concrete specimens.

Material Properties
E(Gpa) ϑ ρ(kg/m3)

Aluminum (Al) 70 0.3 2702
Alumina (Al2O3) 380 0.3 3800

2.1. Displacement Relations

The displacement field of the exponential shear defor-
mation theory is given as below [13];

u(x1, x2, x3, t) = (4a)

u0(x1, x2, x3, t)− x3
∂w(x1, x2, t)

∂x1
+ f(x3)φ1(x1, x2, t)

v(x1, x2, x3, t) = (4b)

v0(x1, x2, x3, t)− x3
∂w(x1, x2, t)

∂x2
+ f(x3)φ2(x1, x2, t)

w(x1, x2, x3, t) = w(x1, x2, t) (4c)

where f(x3) = x3e
−2(

x3
h )2 and u, v, and w are displace-

ments in the x1, x2, and x3 directions respectively, and
u0 and v0 are the mid-plane displacements. With the
linear assumption of Von-Karman strain, the displace-
ment strain field will be as follows:

ε11 =
∂u

∂x1
=
∂u0
∂x1

− x3
∂2w

∂x21
+ f(x3)

∂φ1

∂x1
(5a)

ε22 =
∂u

∂x2
=
∂u0
∂x2

− x3
∂2w

∂x22
+ f(x3)

∂φ2

∂x2
(5b)

γ12 =
∂u

∂x2
+

∂v

∂x1
=
∂u0
∂x2

+
∂v0
∂x1

− 2x3
∂2w

∂x1∂x2

+ f(x3)

(
∂φ1

∂x2
+
∂φ2

∂x1

)
(5c)

γ13 =
∂u

∂x3
+
∂w

∂x1
=
df(x3)

dx3
φ1 (5d)

γ23 =
∂v

∂x3
+
∂w

∂x2
=
df(x3)

dx3
φ2 (5e)

In the Eq. (5), εii are normal strains and γij are shear
strains. Considering Hooke’s Law for stress field, the
normal stress σ33 was assumed to be negligible in com-
parison with plane stresses σ11 and σ22. Thus, stress-
strain relationships will be as follows:

σ11 =
E(x3)

1− ϑ2
(ε11 + ϑε22) =

E(x3)

1− ϑ2

⌊
f(x3)

(
∂φ1

∂x1
+ ϑ

∂φ2

∂x2

)
+

(
∂u0
∂x1

+ ϑ
∂v0
∂x2

)
− x3

∂2w

∂x21
+ ϑ

∂2w

∂x22

⌋
(6a)

σ22 =
E(x3)

1− ϑ2
(ε22 + ϑε11) =

E(x3)

1− ϑ2

⌊
f(x3)

(
∂φ2

∂x2
+ ϑ

∂φ1

∂x1

)
+

(
∂v0
∂x2

+ ϑ
∂u0
∂x1

)
− x3

∂2w

∂x22
+ ϑ

∂2w

∂x21

⌋
(6b)

τ12 = Gγ12 =
E(x3)

2(1 + ϑ)

(
∂u0
∂x2

+
∂v0
∂x1

− 2x3
∂2w

∂x1∂x2
+ f(x3)

(
∂φ1

∂x2
+
∂φ2

∂x1

))
(6c)

τ13 = Gγ13 =
E(x3)

2(1 + ϑ)

(
df(x3)

dx3
φ1

)
(6d)
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τ23 = Gγ23 =
E(x3)

2(1 + ϑ)

(
df(x3)

dx3
φ2

)
(6f)

where E(x3) is the Young’s modulus and G(x3) =
E(x3)/2(1+ϑ) is the Shear modulus of the plate. The
Hamilton’s principle was employed to extract equation
of motion. The Hamilton’s principle can be defined as
follows [13]: ∫ T

0

(δU + δW − δT )dt = 0 (7)

where δ is the variation operator, U is the strain en-
ergy, W is the work done by external forces and T is
the kinetic energy. U, T , and W in the Eq. (7) can be
defined as below:

U =
1

2

∫
v

(ε11σ11 + ε22σ22 + 2ε12σ12 + 2ε13σ13

+ 2ε23σ23) (8)

T =
1

2

∫
v

ρ(x3)(u̇
2 + v̇2 + ẇ2)dv (9)

W =
1

2

∫ a

0

∫ b

a

[
N1

(
∂w

∂x1

)2

+N2

(
∂w

∂x2

)2
]
dydx (10)

where dot-top index contract indicates the differen-
tiation with respect to the time variable and N1 and
N2 are the in-plane loads in the x1 and x2 directions
respectively. Exertion of variation operator on Eq. (7)
should be as follows:

δ

(
∂i

∂j

)
=

∂

∂j
δ(i), i = φ1, φ2 j = x1, x2 (11)

δ

(
∂2i

∂j∂k

)
=

∂2

∂j∂k
δ(i) i = w,


j = x1, x2

k = x1, x2

(12)

δ

(
∂i

∂t

)2

= 2

(
∂i

∂j

)
∂

∂j
δ(i), i = u, v, w (13)

Finally, the nonlocal governing differential equations of
motion of the rectangular nanoplates in terms of the
stress resultants were derived by Hamilton’s principle
(using Eq. (7)), which can be defined as Eqs. (14a) -
(14e).

∂N11

∂x1
+
∂N12

∂x2
= I0

(
∂2u0
∂t2

)
− I1

(
∂3w

∂x1∂t2

)
+ I3

(
∂2φ1

∂t2

)
(14a)

∂N22

∂x2
+
∂N12

∂x1
= I0

(
∂2v0
∂t2

)
− I1

(
∂3w

∂x2∂t2

)
+ I3

(
∂2φ2

∂t2

)
(14b)

∂2M11

∂x21
+ 2

∂2M12

∂x2∂x2
+
∂2M22

∂x22
= I0

(
∂2w

∂t2

)
+ I1

(
∂3u0
∂x1∂t2

+
∂3v0
∂x2

∂t2
)
− I2

(
∂4w

∂x21∂t
2
+

∂4w

∂x22∂t
2

)

+ I4

(
∂3φ1

∂x1∂t2
+

∂3φ2

∂x2∂t2

)
+N1

∂2w

∂x21
+N2

∂2w

∂x22
(14c)

∂R11

∂x2
+
∂R12

∂x1
−Q1 = I3

(
∂2u0
∂t2

)
− I4

(
∂3w

∂x1∂t2

)
+ I5

(
∂2ϕ

∂t2

)
(14d)

∂R22

∂x2
+
∂R12

∂x1
−Q2 = I3

(
∂2v0
∂t2

)
− I4

(
∂3w

∂x2∂t2

)
+ I5

(
∂2φ2

∂t2

)
(14e)

The following sets of boundary conditions at the
edges of the plate were obtained as a result of the ap-
plication of the Hamiltons principle:

Either R11 = 0 or φ1 prescribed at x1 = 0, a

and either R22 = 0 or φ2 prescribed at x2 = 0, b (15a)

Either R12 = 0 or φ2 prescribed at x1 = 0, a

and either R12 = 0 or φ1 prescribed at x2 = 0, b (15b)

Either M11 = 0 or
∂x3

∂x1
prescribed at x1 = 0, a

and either M22 = 0 or
∂x3

∂x2
prescribed at x2 = 0, b (15c)

Either
∂M1

∂x1
+ 2

∂M12

∂x2
= 0 or x3 prescribed at x1 = 0, a

and either
∂M2

∂x2
+ 2

∂M12

∂x1
= 0 prescribed at x2 = 0, b

(15d)

Either N11 = 0 at x1 = 0, a and either

N22 = 0 prescribed at x2 = 0, b (15e)

where

(I0, I1, I2, I3, I4, I5) =∫ h
2

−h
2

ρ(x3, T )(1, x3, x
2
3, f(x3), x3f(x3))dx3 (16a)
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(R11, R22, R12) =

∫ h
2

−h
2

(σ11, σ22, σ12)f(x3)dx3 (16b)

(Q1, Q2) =

∫ h
2

−h
2

(σ13, σ23)

(
df(x3)

dx3

)
dx3 (16c)

(N11, N22, N12) =

∫ h
2

−h
2

(σ11, σ22, σ12)dx3 (16d)

(M11,M22,M12) =

∫ h
2

−h
2

(σ11, σ22, σ12)x3dx3 (16e)

where I is the intertia, N,R and Q are the stress re-
sultants and M is the moment which is acting on the
body. It can be inferred that in Eqs. (16a)-(16e) the
functions of displacements are coupled. The permissi-
ble displacement and rotation functions that can sat-
isfy the simply supported boundary conditions at all
edges of the plate are trigonometric series. According
to the Navier solution, the explanation of the displace-
ments and rotations are [11]:

u0 =
∞∑

m=1

∞∑
n=1

umn cos(γx) sin(βy) sin(λmnt) (17a)

v0 =
∞∑

m=1

∞∑
n=1

vmn sin(γx) cos(βy) sin(λmnt) (17b)

w =
∞∑

m=1

∞∑
n=1

Wmn sin(γx) cos(βy) sin(λmnt) (17c)

φ1 =
∞∑

m=1

∞∑
n=1

ϕmn sin(γx) cos(βy) sin(λmnt) (17d)

φ2 =

∞∑
m=1

∞∑
n=1

ψmn sin(γx) cos(βy) sin(λmnt) (17e)

where (umn, vmn,Wmn, ϕmn, ψmn) are unknown con-
stant coefficients and λmn is the natural frequency of
the plate. Substituting Eqs. (17a)-(17e) into (14a)-
(14e) and setting λmn as zero, the formulation of buck-
ling problem is yielded as the following form:

([K]−Ncr[Kg])[∆] = 0 (18)

Where [K] collects all stiffness terms, [Kg] collects all
terms related to the in-plane forces and [∆] is the vec-
tor of unknown coefficients. For each value of m and n,
the smallest value of Ncr is the critical buckling load
of the plate.

3. Results and Discussion

In order to validate the present formulation, the criti-
cal buckling load of FG (Al/Al2O3) rectangular plate
obtained by the present method were compared with
those of Şimşek Reddy (2013) as listed in Table 2 and
Table 3. In Tables 2 and 3, the non-dimensional criti-

cal buckling load, Ncr =
Ncra

2

D
of a simply supported

FG rectangualr plate are reported for different plate’s

aspect ratios including
a

b
= 0.5, 1.0, 1.5 and 2.0, and

plate’s length to thickness ratios
a

h
= 5, 10 and 20, and

power low indexes of the FG material g = 0, 1, 2 and
10. In Tables 2 and 3 calculations are illustrated for
the FG rectangular plate which subjected to uniaxial
compression load along the x1-axis (β1 = −1, β2 = 0)
and biiaxial compression load (β1 = −1, β2 = −1) re-
spectively. From the results presented in Tables 2 and
3, it can be seen that there is a good agreement be-
tween the present results and those of Şimşek Reddy
(2013).

Table 2
Comparison of non-dimensional critical buckling load (N̄cr) of FG plate subjected to uniaxial compression load along the x1-axis
(β1 = −1, β1 = 0).

a/b h/a Source Power low index
0 1 1 10

Present 6.7259 3.1488 2.6457 1.9209
5 Şimşek Reddy (2013) 6.7203 3.4164 2.6451 1.9213

Present 7.4069 3.7118 2.8898 2.1894
0.5 10 Şimşek Reddy (2013) 7.4050 3.7100 2.8800 2.1800

Present 7.5997 3.7932 2.9582 2.2689
10 Şimşek Reddy (2013) 7.5990 3.7900 2.9500 2.2600

Present 16.1425 8.2340 6.3459 4.4801
5 Şimşek Reddy (2013) 16.0200 8.2200 6.3400 4.4800

Present 18.5847 9.3418 7.2636 5.4521
1.0 10 Şimşek Reddy (2013) 18.5700 9.3300 7.2600 5.4500

Present 19.3544 9.6682 7.5372 5.7666
10 Şimşek Reddy (2013) 19.3500 9.6600 7.5300 5.7600
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Table 3
Comparison of non-dimensionalcriticalbucklingload (N̄cr) of FG plate subjected to biaxial compression loads (β1 = −1, β2 = −1).

a/b h/a Source Power low index
0 1 1 10

Present 5.3807 2.7350 2.1166 1.5367
5 Şimşek Reddy (2013) 5.3760 2.7330 2.1160 1.5370

Present 5.9255 2.9694 2.3118 1.7515
0.5 10 Şimşek Reddy (2013) 5.9260 2.9690 2.3120 1.7520

Present 6.0797 3.0346 2.3665 1.8151
10 Şimşek Reddy (2013) 6.0790 3.0340 2.3670 1.8150

Present 8.0212 4.1170 3.1729 2.2400
5 Şimşek Reddy (2013) 8.0110 4.1120 3.1720 2.2400

Present 9.2924 4.6709 3.6318 2.7260
1.0 10 Şimşek Reddy (2013) 9.2890 4.6700 3.6320 2.7260

Present 9.6772 4.8341 3.7686 2.8833
10 Şimşek Reddy (2013) 9.6760 4.8340 3.7690 2.8830

Present 10.6945 6.9969 5.4085 3.8967
5 Şimşek Reddy (2013) 11.6820 6.0800 4.6640 3.1720

Present 14.1659 7.6862 5.9820 4.5211
1.5 10 Şimşek Reddy (2013) 14.6080 7.3790 5.7280 4.2380

Present 15.4289 7.8809 6.1455 4.7105
10 Şimşek Reddy (2013) 15.5890 7.7980 6.0760 4.6300

Present 15.7757 8.3338 6.3456 4.1421
5 Şimşek Reddy (2013) 15.7240 8.3090 6.3350 4.1380

Present 21.5230 10.9402 8.4662 6.1467
2.0 10 Şimşek Reddy (2013) 21.5050 10.9320 8.4640 6.1480

Present 23.7020 11.8776 9.2473 7.0060
10 Şimşek Reddy (2013) 23.6970 11.8750 9.2470 7.0070

In Fig. 2, the influence of the length to thickness
ratios, (a/h), on the non-dimensional critical buckling

load, Ncr =
Ncra

2

D
, is illustrated for a functionally

graded (Al/Al2O3) rectangular plate with simply sup-
ported boundary conditions while gradient index, g,
varies from 0 to 10. From the results presented in Ta-
bles 2 and 3 and Fig. 2, it can be observed that the
non-dimensional critical buckling load of the FG rect-
angular plate increases monotonically, as the length to
thickness ratio increases. This isn’t a surprising result
since we know higher values of length to thickness ra-
tios reduce the stiffness of the structure more effectively
than its inertia, thus lower value of the critical buckling
load and higher value of the non-dimensional critical

buckling load, N̄cr =
Ncra

2

D
, should be expected.

Variation of non-dimensional critical buckling load,

Ncr =
Ncra

2

D
, of a functionally graded (Al/Al2O3)

rectangular plate versus plate’s aspect ratio are illus-
trated in Fig. 3 for simply supported boundary con-
ditions while the aspect ratios of the plates vary from
0.5 to 3. From the results presented in Fig. 3, it can
be observed that the non-dimensional critical buckling
load are considerably increased by increasing the as-
pect ratio of plate.

From Figs. 2 and 3 it can be observed that by
increasing the value of the power law index leads to re-

duction of the amplitude of the critical buckling load.
This is due to the fact that higher values of power law
index correspond to high portion of metal in compari-
son with the ceramic part. In other words, increase in
the power-law index results in reduction of elasticity
modulus and bending stiffnes implying that the plate
becomes flexible. Therefore, it leads to reduction of
the critical buckling load.

Fig. 2. Effect of length to thickness ratios (a/h)
on non-dimensionalcritical buckling load under biaxial
compression load.

4. Conclusions

A Navier method was applied to analysis buckling of
functionally graded rectangular plates. The formula-
tions were based on exponential shear deformation the-
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ory and Hamilton’s principle isused to derive the equa-
tions of motion and associated boundary conditions.

Fig. 3. Effect of aspect ratio (a/b) on non-
dimensionalcritical buckling load under biaxial com-
pression for an FG plate and various material variation
parameters(n).

Comparison cases by those reported in the lit-
erature for simply supported rectangular FG plates
demonstrate high stability and accuracy of the present
solution. Presented results herein show the effects of
variations of thickness to length ratio, power law in-
dexes, and aspect ratio on the critical values of an FG
plate. It was shown that increase in the power law
index causes the non-dimensional critical buckling to
decrease, Also, The increase of aspect ratio increases
the critical buckling load, and increase in the length to
thickness causes increase in the critical buckling load.
All analytical results presented here can provide other
research groups with a reliable source to inspect their
analytical and numerical solutions.
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