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Abstract

In this paper, the stress intensity factors for semi-elliptical cracks in a
homogeneous isotropic cylinder have been determined. Athick-walled cylinder
is subjected to a one-dimensional axisymmetric thermal shock on the outer
surface according to the classic thermo elasticity (CTE), Green-Lindsay (G-L),
and Green-Naghdi (G-N) theories. The effect of temperature-strain coupling
and the effect of inertia term in governing equations are considered. The
semi-elliptical crack stress intensity factors (SIFs) at the deepest and surface
pointsare determined using weight function method. The comparison between
the temperature, stress, and SIF obtained from CTE, G-L, and G-N theories
shows the different behavior of generalized theories and CTE. By considering
relaxation times, prediction of higher temperature and stress values, in
contrast to CTE theory, will be resulted. Furthermore, the SIF resulted from
generalized theories is significantly higher than CTE theory. The temper-
ature, stress, and maximum SIF obtained for G-N II is higher than G-L theory.

Nomenclature

b Vector volumetric energy per unit mass br Radial component of body force

c1 Dimensionless elastic expansion veloc-
ity

Ĉ Vector of new material properties in GL
theory

C Fourth order tensor elastic modulus c2 Dimensionless shear wave velocity
cT Heat wave propagation speed cK GN model damping coefficient
E Strain tensor E1 Discretization error
K Stress intensity factor (SIF) K Second order tensor thermal conductivity
l Characteristic length mA Crack weight function
Pi Internal pressure q Heat flux vector
Q Crack shape factor for the semi-

elliptical
qr Radial component of heat flux

Ri, Ro Inner, outer cylinder radius σ Cauchy stress tensor
s Variable of Laplace transform S Entropy per unit volume
t Thickness u Displacement vector
u′ Displacement in in the Laplace v Characteristic velocity
T Absolute temperature Td Characteristic temperature
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T ′ Temperature field in the Laplace do-
main

β Second order tensor of stress tempera-
ture modulus

ε Coupled thermoelastic parameters ρ Mass density
Rs Internal heat generation per unit vol-

ume and time
lv(ξiR),
Kv(ξiR)

Modified type I, II Bessel functions of
order v

∇ Gradient operator ∇· Divergence operators
∇2 Laplacian operator

1. Introduction

Many of the components used in engineering are vul-
nerable to sudden changes of mechanical and thermal
loads. The internal combustion engine cylinders are
typical of these structures that are under simultaneous
mechanical and thermal loading. In such cases, the
rate of load and material property changing can lead
to the initiation and growth of cracks. While the classi-
cal thermoelasticity theories are suitable for predicting
cases that are much greater than the duration required
for a single wave front to travel through the thickness
of the cylinder, the generalized or coupled thermoelas-
ticity theories are normally applicable to prediction of
the transient effects in the early times of the thermoe-
lastic wave propagation. Most of the approaches which
were proposed to overcome the inaccurate prediction of
the classical theory are based on the general notion of
relaxing the heat flux in the classical Fourier heat con-
duction equation, thereby introducing a non-Fourier
effect.

Green and Lindsay [1] modified the Duhamel-
Neumann relationships and the entropy relation by in-
troducing two relaxation times that relate the stress
and entropy to the temperature rate. Green and
Naghdi formulated three models of thermoelasticity for
homogeneous and isotropic materials labeled as mod-
els I, II, and III. Model I results in thermal diffu-
sion and infinite speed of thermal waves. Model II of
Green-Naghdi theory [2] is known as the “thermoelas-
ticity without energy dissipation” and allows for ther-
mal waves to propagate at a finite speed, but with-
out damping. Green-Naghdi type III admits the finite
speed of damped thermal wave propagation. Green-
Lindsay (GL) and Green-Naghdi (GN) theories are
known as the generalized theories, or thermoelastic-
ity theories with secondary sound effect or with finite
thermal wave speed. In cases such as Nano-fluids [3],
phase changing [4], nuclear reactor technology [5], high-
frequency heat therapeutic methods [6] and applying
the high heat flux in a short time the secondary sound
effects are important. In such cases, the heat field with
finite velocity is affected by elastic field and in these
conditions the coupled form of governing equations for
generalized theories should be used.

Anwar and Sharif calculated temperature, displace-
ment,and thermal stressfields in long hollow cylinders
for single [7] and two-layer [8] cases. Laplace transform
and displacement potential function were used consid-

ering Lord-Shulman theory.
Coupled thermoelastic behavior of multilayer func-

tionally graded cylindrical shell under general mechan-
ical and thermal loading was studied by Fu et al.
[9] using Laplace transform. After applying Laplace
transform, the time variable is removed from govern-
ing equations and ordinary differential equations are si-
multaneously solved by the use of displacement poten-
tial function technique. The effects of heat conduction
model, inertia, strain-temperature fields coupling, type
of loading, the quality of interface contact, Biot num-
ber and the effect of the change in functionally graded
material properties on elastic and thermal results were
depicted.

Darabseh et al. [10], studied the transient thermo
elastic response of a thick-walled cylinder made of
FG material under thermal loading regarding Green-
Lindsay theory. Material properties varied according
to a power law in radial direction. Utilizing galerkin
finite element method, the governing equations were
solved and the material composition effect on temper-
ature, radial displacement, and thermal stresses was
investigated.

Designs of engineering structures are often done in
situations where unwanted cracks and defects arise dur-
ing manufacturing processes or transportation. Under
certain conditions these defects and cracks can grow
quickly and cause catastrophic failures [11].

Hosseini-Tehrani et al. [12], by using boundary el-
ement method and Laplace transform, calculated the
dynamic SIF under heat shock by means of G-L the-
ory. The singular behavior of stress in the vicinity of
the crack tip was modeled by four-node elements, and
SIF for the mode I was calculated according to the dis-
placement fields of nodes. The effect of relaxation time
on the strip SIF was also shown. The behavior of coins
crack in an infinite thermoelastic solid was studied by
Mallik and Kanoria [13] using a unified form of govern-
ing equations. The unified form of equations includes
CTE theory, Lord-Shulman, and G-N. The Laplace
and Henkel transforms were utilized in the solution of
the problem and numerical methods were also used for
solving integral equations while the temperature, stress
and displacement calculated from CTE, Lord-Shulman
and G-L theories were presented. Cylinders were one
of the widely used components in industrial applica-
tions which due to their unique geometric nature, were
subjected to periodic loading. Lin and Smith [14] cal-
culated the SIF and fatigue life for a cylinder contain-
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ing a half-elliptical crack by using finite element meth-
ods. It was also shown that the surface crack turns
into a half-elliptical shape after repeated loading. Pet-
roski and Achenbach [15], presented an approximate
expression for the displacement of crack surface to cal-
culate the weight function of SIFs for a reference load-
ing. Moreover, the SIF was obtained for a half-plane
containing edge cracks, radial cracks from circular hole
and also radially cracked rings. Using a weight func-
tion method, Shahani and Nabavi extracted a closed
form solution for calculating SIF in deepest and sur-
face point so fan axial semi-elliptical crack on a thick-
walled cylinder which was under internal pressure and
also subjected to steady state [16] and transient [17]
thermalloadings. Lee et al. [18], using the boundary in-
tegral equation methods, obtained the weight function
for longitudinal and hoop cracks. Varfolomeyev and
Hodulak [19], derived the weight function for axial and
hoop inner surface cracks on an infinitely long cylinder;
The proposed weight function was utilized to calculate
SIF for uniform tensile loading. More recently, Nazari
and Asemi [20] gained the mode I SIF at the deepest
and surface point of a half-elliptical crack under hy-
perbolic thermal loading by means of weight function.
The effect of crack aspect ratio on the stress intensity
factor of deepest and surface point of the crack was
also presented.

Investigation of second sound effect in generalized
theories rather than classic theory of thermo elasticity
and coupling effectsin generalized theories in prior re-
searches was performed only on temperature and ther-
mal stresses fields and current study investigates the
second sound and coupling effects on thermal stress in-
tensity factor. Thermal stress intensity factor is deter-
mined in coupled and uncoupled cases and results are
compared with classic theory of thermo elasticity. The
strain-temperature field coupling and inertia terms are
also considered in the governing equations.

2. The Heat Field

In this section, the temperature field in a long cylinder
is obtained by the help of CTE, GL, and GN theo-
ries. The long hollow cylinder subjected to symmetric
boundary conditions and T0 initial temperature, has
an inner radius of ri and the thickness of t, as shown
in Fig. 1. First, the cylindrical shell at ambient tem-
perature is subjected to axisymmetric heat shock on
the outer surface at time t = 0.

At time t = 0, the cylinder is at its initial temper-
ature. At t = 0+, the temperatures of internal and ex-
ternal surfaces will change according to the pre-defined
boundary conditions. Using CTE, GL, and GN theo-
ries, constitutive equations can be written in terms of
unified parameters as follows [21].

∇ · σ + ρb = ρü (1a)

Fig. 1. Axial internal semi-elliptical crack in a cylin-
der [17].

E =
1

2
(∇u+ (∇u)T ) (1b)

σ = CE− β(T − T0 + t1Ṫ ) (1c)

∇ · q = Rs − T0Ṡ (1d)

S =

(
ρc

T0

)
(T + t2Ṫ − T0) + β : E− 1

T0
Ĉ · ∇T (1e)

ηq+ t3q̇ = −ηK∇T − t3K∇Ṫ − t3K
∗∇T − ĈṪ (1f)

where equations (1a), (1b), (1c), (1d), (1e), and (1f)
are respctively the equation of motion, linear strain-
displacement equation, Hooke’s Law for linear thermo
elastic materials, energy equilibrium equation, the en-
tropy equation, and the equation for the thermal con-
ductivity of GL and GN theories. where ρ is the mass
density, σ is the Cauchy’s stress tensor, u is the dis-
placement vector, b is the body force vector per unit
mass, q is the heat flux vector, T0 is the reference tem-
perature, T is the absolute temperature, S is entropy
per unit volume, Rs is the internal heat source per unit
volume per unit time, E is the strain tensor, β is the
second order tensor of stress-temperature moduli, K is
the second order tensor of thermal conductivity, Ĉ is
the fourth order tensor of elastic moduli, c is the spe-
cific heat. Also t1 and t2 are the relaxation times and
Ĉ is a vector of new material constants proposed by
Green and Lindsay, and K∗ is the second order ten-
sor of new material constants associated with the GN
theory. Also, η and t3 are terms introduced to con-
solidate G-L and G-N theories into a unified system
of equations. In equations (1), (∇) is the del operator
and indicates the gradient of a function. Meanwhile
(∇·) denotes the divergence operator also β : E In the
above equation symbolizes the trace for product of two
tensors [21]. To obtain the governing equations, using
different theories, the parameter values are assigned as
follows:
For CTE theory:

τ = Ĉ = 0, t1 = t2 = t3 = 0, η = 1

For GL theory:

τ = 0, η = 1, t3 = t0 = 0

For GN type III theory:

τ = 0, Ĉ = 0, η = t1 = t2 = 0, t3 = 1
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The governing equations for GN theories type I and II
are respectively obtained by approaching K∗ → 0 and
K → 0 in the governing equations resulted from GN
type III theory. The energy and equilibrium govern-
ing equations based on GL and GN theories for thick-
walled cylinders are expressed as follows [22].

t3κ
∗∇2T + t3k∇2Ṫ + η

k

t0

∫ t

0

exp(−(t− t̃)/t0)(∇2T )dt̃

− ρc(t2 + t3)T̈ − ρcηṪ − ρT0β(∇ · u̇)− t3T0β(∇ · ü)

= ηRs + t3Ṙs = 0 (2a)

µ∇2u+ (λ+ µ)∇(∇ · u)− βV (T + t1Ṫ ) + ρb = ρü
(2b)

In the above equations, ∇2 is the Laplacian operator.
The thermal conductivity equation for GL and G Nthe-
ories for homogeneous, isotropic materials can be writ-
ten as follows [21].

ηq+ t3q̇ = −ηk∇T − t3k∇Ṫ − t3k
∗∇T (3)

The following dimensionless variables are introduced
for simplification.

R̄ =
r

l

t′ =
v

l
t

ū =
λ+ 2µ

lβTd
u

t̄0 =
v

l
t0

t̄1 =
v

l
t1

t̄2 =
v

l
t2

t̄3 =
v

l
t3 (4)

T̄ =
T − T0
Td

σ̄ =
σ

βTd

q̄ =
q

ρcvTd

R̄s =
lR

ρcvTd

b̄ =
βlTd

(λ+ 2µ)v2
b

where l, v, and Td are the characteristic length, veloc-
ity, and temperature respectively. For simplification

purposes the bar symbol is removed from the variables.
Equations (2) and (3) in terms of dimensionless pa-
rameters in cylindrical coordinates can be written as
follows [22].

t3c
2
T

[
∂2

∂R2
+

1

R

∂

∂R

]
T + t3c

2
K

[
∂2

∂R2
+

1

R

∂

∂R

]
Ṫ

+ η
c2K
t0

∫ t

0

exp(−(τ − t̃)/t0)

([
∂2

∂R2
+

1

R

∂

∂R

]
T

)
dt̃

− ε

[
t3

(
∂

∂R
+

1

R

)
ü+ η

(
∂

∂R
+

1

R

)
u̇

]
− (t2 + t3)T̈

− ηṪ + ηRs + t3Ṙs = 0 (5a)

c21
∂

∂r

[
∂

∂R
+

1

R

]
u− c21

(
∂T

∂R
+ t1

∂Ṫ

∂R

)
+ br = ü (5b)

ηqr + t3q̇r = −(ηc2k + t3c
2
T )

∂T

∂R
− t3c

2
K
∂Ṫ

∂R
(5c)

where

c21 =
λ+ 2µ

ρv2

c22 =
µ

ρv2

c2T =
κ∗

ρcv2
(6)

c2K =
k

ρclv

ε =
β2T0

ρc(λ+ 2µ)

With c1 representing the dimensionless elastic ex-
pansion velocity, c2 dimensionless shear wave velocity,
cT heat wave propagation speed, cK GN model damp-
ing coefficient and is coupled thermoelastic parameter.
Moreover, u is the radial displacement components, br
theradial component of body force and qr is the radial
component of heat flux. The initial conditions for tem-
perature, displacement, and heat flux are assumed as
follows. 

u(R, 0) = 0

u̇(R, 0) = 0

T (R, 0) = 0

Ṫ (R, 0) = 0

q(R, 0) = 0

(7)

Writing the equations (5) in the Laplace domain
and regarding the initial conditions expressed in (7)
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leads to the following ordinary differential equations in
terms of locations.

(t3 + c2T + st3c
2
k)

[
∂2

∂R2
+

1

R

∂

∂R

]
T ′ + (η + t3s)Rs

− (t2 + t3)s
2T ′ − ηsT ′ − ε[t3s

2 + ηs]

(
∂

∂R
+

1

R

)
u′

+ η +
c2k

t0s+ 1

[
∂2

∂R2
+

1

R

∂

∂R

]
T ′ = 0 (8a)

c21
∂

∂r

[
∂

∂R
+

1

R

]
u′ − c21(1 + t1s)

∂T ′

∂R
+ br = s2u′ (8b)

(η + ηt0s+ t3s)q
′
r = −(ηc2k + t3c

2
T + st3c

2
k)

∂T ′

∂R
(8c)

where s is the standard variable of Laplace transform.
u′ is obtained by Laplace transformation of u, and T
symbolizes the temperature field in the Laplace do-
main. The displacement potential function is presented
as below.

u′ =
∂ψ

∂R
(9)

Equations (8), in the absence of internal heat genera-
tion and body forces, can be written in the form shown
in equation (10) using the displacement potential func-
tion.

β1∇2ψ = β2∇2θ̃ − θ̃ (10a)

β3∇2ψ − s2ψ = β4θ̃ (10b)

q′r = −β5
∂T ′

∂R
(10c)

where

β1 =
ε[t3s

2 + ηs]

(t2 + t3)s2 + ηs

β2 =
t3c

2
T + st3c

2
k + η

c2K
t0s+ 1

(t2 + t3)s2 + ηs

β3 = c21 (11)

β4 = c21(1 + t1s)

β5 =

(
(ηc2K + t3c

2
T + st3c

2
K)

)
(η + ηt0 + t3s)

Removing θ̃ from equations (10a) and (10b) yields
the ordinary differential equations with constant co-
efficients shown in equation (12).

A∇4ψ +B∇2ψ + Cψ = 0 (12)

where

A =
β3β2
β4

B = −β2s
2

β4
− β3
β4

− β1 (13)

C =
s2

β4

The solution to the linear ordinary differential equa-
tion (12) in terms of modified Bessel functions can be
expressed as below.

ψ(R, s) = D1I0(ξ1R) +D2K0(ξ1R) +D3I0(ξ2R)

+D4K0(ξ2R) (14)

The displacement and temperature fields can be re-
spectively determined by substituting the above equa-
tion in equations (9) and (10b).

u′(R, s) = ε1[D1I1(ξ1R)−D2K1(ξ1R)]

+ ξ2[D3I1(ξ2R)−D4K1(ξ2R)] (15a)

T ′(R, s) = γ1[D1I0(ξ1R) +D2K0(ξ1R)]

+ γ2[D3I0(ξ2R) +D4K0(ξ2R)] (15b)

where Iv(ξiR) andKv(ξiR) are the modified type I and
II Bessel functions of order v · ξi can be determined us-
ing the constants in equation (13) as below.

ε1,2 =

{
−B ±

√
B2 − 4AC

2A

}
(16)

Coefficients γ1 and γ2 can be also expressed as the fol-
lowing form.

γ1 =
β3ξ

2
1 − s2

β4

γ2 =
β3ξ

2
2 − s2

β4

(17)

Temperature, displacement, and heat flux fields
were analytically determined in Laplace domain and
unknown coefficients Di (i = 1, 2, 3, 4) were assigned
for the problem based on the assumed boundary con-
ditions. The dimensionless thermal and mechanical
boundary conditions in inner and outer surfaces of the
cylinder are as follows:

T ′(Ri, s) = 0

T ′(1, s) = 1/s

u′(Ri, s) = 0

u′(1, s) = 0

(18)
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After determining the unknown coefficients by the help
of boundary conditions (18), the temperature field can
be mapped to time domain using numerical inverse
Laplace transform depicted in the Appendix.
The material that was used (in ref. 21 and current
study) is aluminum and consequently all results be-
long to this material. Dimensionless values were used
for thermal parameters instead of introducing ordinary
values that have dimension. Thermal and mechanical
properties of aluminum are represented in Table 1.

Table 1
Aluminum thermal and mechanical properties.

Property α c ρ E v
Value 23e-6 0.896 2707 70 0.346

For mapping the results into time-domain, the fol-
lowing values for relevant dimensionless parameters
were used [22].

c1 = 1

CT = 0.535

ϵ = 0.02

(19)

To extract the results of the GL theory, the following
values for the dimensionless parameters were selected
according to what is stated in reference [22].

t1 = 4

t2 = 4

CK = 1

(20)

According to the above values, the thermal wave speed
for GL theory is expressed as follows.

CK√
t2

= 0.5 (21)

For GN type II theory, the results are obtained substi-
tuting the following values.

t3 = 4 (22a)

CT = 0.5 (22b)

CK = 0 (22c)

In GN theory the heat wave speed can be extracted
using equation (22-2).

3. The Hoop Stress Field

In this section, the hoop stress field of the cylinder can
be determined analytically in the Laplace domain us-
ing the temperature field. The effects of inertia term
and also the effect of strain-temperature fields coupling

are considered in the governing equations. The hoop
stress in a cylinder in terms of temperature distribu-
tion is proposed in reference [21] which is presented in
equation (23)

σΦ =
Eα

1− v

[
1

r20 − r2i

(
1 +

r2i
r2

)∫ ro

ri

rTdr

+
1

r2

∫ r

ri

rTdr − T

]
(23)

The hoop stress suggested in the above equation can
be dimensionless by the help of equation (24)

S′
Φ =

σΦ(1− v)

EαTd
(24)

By substituting the equation (23) into equation (24),
the dimensionless hoop stress can be obtained as be-
low.

S′
Φ(r, s) =

1

1−R2
i

(
1 +

R2
i

R2

)∫ 1

Ri

RT ′dR

+
1

R2

∫ R

Ri

RT ′dR− T ′ (25)

After substitution of the non-dimensional temperature
field equation into equation (25), the dimensionless
hoop stress of the cylinder can be obtained in the
Laplace domain as follows

S′
Φ(R, s) =

1

D1(1−R2
i )

(
1 +

R2
i

R2

)[
A5I1(D1) +A6K1(D1)

−Ri(A5I1(D1Ri) +A6K1(D1Ri))
]
+

1

R2D1

[
R(A5

+ I1(D1R) +A6K1(D1R))−Ri(A5I1(D1Ri)

+A6K1(D1Ri))
]
−A5I0(D1R) +A6K0(D1R)

+
1

D2(1−R2
i )

(
1 +

R2
i

R2

){
A7I1(D2) +A8K1(D2)

−Ri(A7I1(D2Ri) +A8K1(D2Ri))

}
+

1

R2D2

{
R(A7I1(D2R))

+A8K1(D2R)−Ri(A7I1(D2Ri) +A8K1(D2Ri))

}
−A7I0(D2R) +A8K0(D2R) (26)

After determining the hoop stress field in the Laplace
domain, the hoop stress field in the thick-walled cylin-
der can be mapped into time domain using numerical
methods.
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4. SIF Determination of Semi-elliptical
Crack

4.1. The Weight Function Method

Most of the existing methods for calculating SIF de-
mand a separate analysis of geometry and loading, i.e.
changing the geometry or load necessitates the repe-
tition of the analysis. The weight function method
provided by Bueckner [23] and Rice [24], is consid-
ered as an efficient method for determining the SIF
which makes the calculation much easier. Weight func-
tion splits up the loading and geometry effects on cal-
culating SIF; so that if the weight function, m(r, a),
for a crack-containing body with known geometry is
available, the SIF can be calculated for any arbitrary
loading. Integrating the product of stress distribution
within a geometry in absence of crack and weight func-
tion on the assumed crack surface yields the SIF.

Hitherto, weight function has been determined for
different crack geometries. First, the weight function
based on the crack surface openings corresponding to
the reference loadings has been stated [25] which re-
quires the analytical solution of the problem on its own.
To solve the above problem, various methods are pro-
posed such as the crack surface opening approximate
function [26] and approximate weight function, which
is normally applicable to a particular geometry. In the
case of one-dimensional radial loading, the weight func-
tion for the cracks deepest point (point A in Fig. 1) is
proposed as follows [17].

mA(r, a) =

√
2

π

√
1

ri + a− r
+MA1

√
2

πa

+MA2

√
2

π

1

a

√
ri + a− r +MA3

√
2

πa3
(ri + a− r)

(27)

where r = ri+a expresses the position of crack tip. The
weight function for the surface points of semi-elliptical
crack (point B in Fig. 1) is proposed in the form of
equation (28) [17].

mB(r, a) =

√
4

π

√
1

r − ri
+MB1

√
4

πa
+

MB2

√
4

πa

1

a

√
r − ri +MB3

√
4

πa3
(r − ri) (28)

The shape factor for the semi-elliptical crack is de-
scribed inequation (29)

Q = 1 + 1.464
(a
c

)1.65

(29)

For the deepest point of a semi-elliptical crack, the co-
efficients MAi (i = 1, 2, 3), are in the form shown by

equation (30)

MA1 =
2π√
2Q

(Y0 − 3Y1) +
24

5

MA2 = 3 (30)

MA3 =
6π√
2Q

(2Y1 − Y0)−
8

5

where

Y0 = B0 +B1

(
a
tc

)
+B2

(
a
tc

)2

+B3

(
a
tc

)4

Y1 = A0 +A1

(
a
tc

)
+A2

(
a
tc

)2

+A3

(
a
tc

)4
(31)

In [17], the coefficients Ai and Bi are introduced as ex-
ponential functions of (a/c). For semi-elliptical crack’s
surface point sconstants, MBi (i = 1, 2, 3), are as de-
pictedin equation (32).

MB1 =
3π√
Q
(2F1 − 5F0)− 8

MB2 =
15π√
Q
(3F1 − F0) + 15 (32)

MB1 =
3π√
Q
(3F0 − 10F1)− 8

In which correction factors for geometry can be ob-
tained by the use of curve fitting as in equation (33)

F0 =

[
C0 + C1

(
a

tc

)
+ C2

(
a

tc

)2

+ C3

(
a

tc

)4 ](a
c

)

F1 =

[
D0 +D1

(
a

tc

)
+D2

(
a

tc

)2

+D3

(
a

tc

)4 ](a
c

) (33)

For the radius ratio of Ro/(Ri = 1.25) the coefficients
Ci and Di are introduced as polynomial functions in
[16].

4.2. SIF Determination

Given the stress is a continuous function of r and weight
function, the SIF can be determined. SIF for cracks
deepest point can be determined using the weight func-
tion for cracksdeepest crack’s deepest point and the
expression in equation (34).

KA =

∫ a

0

mA(r, α)σφ(r)dr (34)

The SIF for the surface points of a semi-elliptical crack
on theinternal surface can be computed using equation
(35).

KB =

∫ a

0

mB(r, α)σφ(r)dr (35)

Fitting second order polynomial curves on the hoop
stress before and after the discontinuity was used,
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which led to more stable results in comparison to the
numerical integration method [20]. If the position of
discontinuity is assumed to be ρ, the hoop stress dis-
tribution can be divided into two parts, before and
after the discontinuity, to make the curve fitting more
accurate.

S′
h1 = A1R

2 +B1R+ C1, Ri ≤ R ≤ Ri + ρ (36a)

S′
h2 = A2R

2 +B2R+ C2, Ri + ρ ≤ R ≤ R0 (36b)

5. Results and Discussion

In this section, the temperature, hoop stress, and stress
intensity factors calculated for a long cylinder with
semi-elliptical crack on the inner surface are presented
in the time domain. For validation purposes, the tem-
perature distribution calculated from GL and GN the-
ories are compared with the results published in refer-
ence [22]. In the mentioned reference, inner and outer
radii of the cylinder are Ri = 1 and Ro = 2 respec-
tively. Figs. 2 and 3 are concluded from the boundary
conditions shown in equation (37) which is stated in
reference [22]. The comparison of results is performed
for four times confirming the sufficient accuracy of the
obtained results.

q′r(Ri, s) =
10000

s(s+ 100)2

u′(Ri, s) = 0, T ′(R0, s) = 0, S′
r(R0, s) = 0

(37)

According to Figs. 2 and 3, the two GL and GN
theories confirm the finite speed of heat wave. At any
moment, according to equation (37), the applied heat
flux on the inner surface of the cylinder causes the tem-
perature change only in points that are between the in-
ner surface and the heat wave front. Moreover, the dis-
continuity in temperature-heat wave speed graphs are
in well correspondence with equations (22) and (38-b).

By applying the thermal shock to the cylinder, the
energy loss is small in the initial times and can be ne-
glected. Therefore the GN type II theory is suitable
for analyzing the thermal shock at initial times. Com-
parison of Figs. 2 and 3 indicates that GL theory, in
contrast to the GN theory, does not predict any sud-
den discontinuity in the temperature graph which orig-
inates from the thermal conductivity equation used in
the theory. In GL theory, the Fourier thermal conduc-
tivity equation is utilized and heat flux is dependent
on the temperature gradient. Moreover, the heat flux
rate is not included in thermal conductivity equation
of GL theory. While in the thermal conductivity equa-
tion of GN type II theory, the rate of heat flux is not
dependent on temperature gradient. The thermal con-
ductivity equations of the two theories can be expressed

as follows.

(qr)GL = −c2K
∂T

∂R
(38a)

(q̇r)GN = −c2T
∂T

∂R
(38b)

Fig. 2. GL temperature distribution.

Fig. 3. Green-Naghdi temperature distribution.

Using the boundary conditions in (37), the dimen-
sionless hoop stress graph is plotted based on G-L the-
ory. The results are also compared with those pre-
sented in [22] at three different times as shown in Fig.
4. According to the figure, in a like manner to the tem-
perature distribution, the stress wave also propagates
with a finite speed within the cylinder.

In Fig. 5, the non-dimensional hoop stress resulted
from GN theory and the boundary conditions (37) is
compared with the results published in reference [22]
at three different times. In Figs. 4 and 5, propagation
of thermal and elastic waves in the radial direction of
cylinder is shown. As shown in the figure, at time
t′ = 0.2, the first discontinuity occurs at the position
of R = 1.1 which originates from the heat wave. The
second discontinuity in hoop stress occurs at R = 1.2
which, according to the unit speed of elastic wave and
equation (20a), is due to the elastic wave. According
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to Figs. 4 and 5, the hoop stress resulted from the
current study are in complete agreement with those
presented in reference [22], confirming the accuracy of
the attained results.

Fig. 4. GL hoop stress distribution.

Fig. 5. G-N hoop stress distribution.

With respect to the numerical inversion of Laplace
transform method presented by [27], an initial guess
for CON (= v.τ) equal to 5 should be considered, and
then suggested procedure in [27] optimizes the Laplace
transform parameter (s). In other words, Laplace
transform parameter determinates by minimizing trun-
cation and discretization errors. “s” is an imaginary
number and equals to V + iW. According to this ref-
erence, after this optimization process real part of “s”
will be in the 1 < V < 18 range. Another parameter
that affects optimized “s” is singularities of the func-
tion that is mapped numerically from Laplace domain
to time space so that V should be greater than real
part of all mentioned functions’s singularities.

The magnitude of V for Figs. 4 and 5 are repre-
sented in Table 2. To verify the accuracy of results, the
SIF for the deepest and surface points of semi-elliptical
crack are compared by those obtained from the weight
function method proposed in [20] in Tables 3 and 4.

Table 2
The material properties of concrete specimens.

R Fig. 4 Fig. 5
1.025 16.12146 14.75145
1.05 11.41847 10.96439
1.075 15.10377 14.55243
1.1 12.19548 13.87284
1.125 14.97539 14.90122
1.15 16.07051 14.30029
1.175 13.20717 12.90162
1.2 13.27567 13.55871
1.225 17.56589 14.83696
1.25 13.30484 12.81183
1.275 17.03927 16.08232
1.3 15.62033 15.84149
1.325 14.79691 13.99193
1.35 14.58224 13.92567
1.375 13.21901 12.66302
1.4 12.81773 12.0516
1.425 13.31697 11.24905
1.45 7.829444 9.043247
1.475 6.930915 6.549061
1.5 8.056337 8.492867
1.525 7.635103 6.806276
1.55 9.791462 7.764695
1.575 8.805568 8.18932
1.6 10.20513 9.313489
1.625 10.14451 10.40014
1.65 11.40883 10.57845
1.675 13.38324 11.83841
1.7 11.46781 10.41729
1.725 13.65477 11.16833
1.75 10.32084 10.73057
1.775 7.058097 8.093935
1.8 9.213539 9.834115
1.825 8.196829 8.131849
1.85 9.112848 9.233337
1.875 8.741133 8.924204
1.9 12.56741 10.78702
1.925 7.589578 8.188326
1.95 10.56639 10.14988
1.975 8.13007 7.872307

The results are obtained by disregarding the effect
of strain-temperature fields coupling and by using the
steady state condition for two GL and GN theories,
which should be consistent with the results of Fourier’s
law. The results presented in Tables 3 and 4 are
achieved by assuming an initial internal temperature of
T (Ri, 0) = −100, an internal pressure of Pi = 10MPa
in a cylinder with a radius ratio of Ro(Ri = 1.25). The
SIF values in Tables 1 and 2 can beturned into dimen-
sionless quantities using the following equation.

KN =
K

Pi
√
πa

(39)

The closeness of the results presented in the current
research to those reported in [19], confirms the efficacy
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of the utilized weight function method for calculating
precise SIF values. Temperature and hoop stress fields
obtained from employing the boundary conditions ex-
pressed in equation (18) were mapped to the space do-
main using numerical methods. In this section, based
on the regarded boundary conditions, heat and stress
waves are always traveling from the outer wall to the in-
ner wall of the cylinder. Moreover, the stress intensity
factor was determined by fitting second order polyno-
mial curves on terms of dimensionless hoop stress and
using the weight function methods.

Table 3
Deepest points SIFs.

[19] GL GN a/t a/c
20.81 20.79 20.8 0.2 0.2
18.80 18.80 18.81 0.4
17.71 17.70 17.71 0.6
16.40 16.40 16.41 0.8
18.98 18.98 18.99 0.2 1
13.53 13.53 13.53 0.4
8.13 8.12 8.13 0.6
2.79 2.79 2.8 0.8

Table 4
Surface points SIFs.

[19] GL GN a/t a/c
14.12 14.12 14.13 0.2 0.2
15.55 15.54 15.55 0.4
17.91 17.90 17.92 0.6
20.78 20.78 20.80 0.8
26.01 26.01 26.02 0.2 1
25.08 25.08 25.08 0.4
24.55 24.54 24.55 0.6
24.30 24.28 24.30 0.8

Fig. 6 demonstrates the effect of coupled thermoe-
lastic parameter on the temperature distribution ob-
tained by GL and GN theories by radius. The finite
speed of heat wave is clearly visible on the graph; and
the heat wave speed obtained by GL and GN theo-
ries is consistent with the value obtained from (21) and
(22b). According to the GL theory, temperature graph
at time t′ = 0.5, after the heat wave has reached the
inner wall and returned to the outer wall, changed in
all cylinder locations; while in GN theory, temperature
distribution at time t′ = 0.2, only points are located
between outer wall of cylinder and thermal wave front,
has changed. According to the figure, it can be de-
duced that in the uncoupled state, which is plotted for
thermoelastic parameter of ε = 0, the speed of the heat
wave is larger than that of the coupled state, which is
plotted for ε = 0.02. This issue originates from the ef-
fect of strain-temperature fields coupling which reduces
the heat wave speed.

The non-dimensional hoop stress distribution re-
sulted from GL theory at time t′ = 0.5 and GN theory
at time t′ = 0.2 are shown in Fig. 7. In the uncou-

pled and coupled states the thermoelastic parameters
are assumed as ε = 0 and ε = 0.02 respectively. As it
is evident in the figure, the stress wave speed shown in
the graph is in good agreement with Fig. 6; discontinu-
ities occur at the same point in both graphs. Further-
more, in the uncoupled state the stress wave propagates
through the cylinder with a higher speed in compari-
son to the coupled state. Unlike temperature distribu-
tion predicted by the GN theory presented in Fig. 6,
where the temperature has only changed in points lo-
cated between the inner wall and heat wave front, the
hoop stress distribution throughout the whole cylinder
is subjected to change as soon as the cylinder tem-
perature changes. This issue originates from the zero
mechanical loading on the cylinder and also the non-
existence of internal and external pressure; and the
area under the hoop stress graph will be zero at a cer-
tain time.

Fig. 6. Coupling thermo elastic parameter effect on
GL (t′ = 0.5) and GN (t′ = 0.2) temperature distribu-
tions.

Fig. 7. Coupling thermo elastic parameter effect on
GL (t′ = 0.5) and GN (t′ = 0.2) hoop stress distribu-
tions.

Table 3 compares the temperature and hoop stress
calculated by CTE, GL, and GN theories at time
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t′ = 0.3. At this time, heeding the finite speed of heat
wave obtained by the generalized theories, the temper-
ature barely changes for points located at R = 0.85,
which is between the outer wall and the heat wave
front. However, the results of temperature obtained
by CTE theory, which is presented for the same mo-
ment, demonstrates the infinite speed of the heat wave;
this is due to the fact that the temperature changes at
all points of the cylinder. Additionally, at the men-
tioned time, the temperature distribution obtained by
CTE theory at position R = 0.85 is 25% of the value
predicted by GL and 23% of the value computed by
GN theory.

In Figs. 8 and 9, time variation of thermal hoop
stress is represented for coupled G-L and G-N theo-
ries respectively. According to the results, as wave
front propagates toward internal surface of cylinder,
the maximum hoop stress increases.

Fig. 8. Coupled Green-Lindsay hoop stress time vari-
ation.

Fig. 9. Coupled Green-Naghdi hoop stress time vari-
ation.

Table 5 also shows that the hoop stress has non-
zero value for points where the temperature remains
unchanged. Comparing stress results between the gen-
eralized and CTE theories in the vicinity of the internal
surface of cylinder shows significant difference between
results of these theories, so that CTE theory underesti-
mates hoop stress in this region and defects and cracks
could initiate and propagate due to the higher thermal
hoop stress. The stress value predicted by generalized
theories is about 4 times the amount anticipated by
CTE theory.

Fig. 10 exhibits the effect of coupled thermo elastic
parameter on the SIF calculated by generalized theo-
ries at the deepest point of a semi-elliptical crack. The
SIF calculated by GL theory at the time t′ = 0.5 and
that obtained by G N theory at time t′ = 0.2 are plot-
ted. According to the figure, the SIF starts to increase
from zero value until it reaches its peak, which is for a
crack whose tip is in the location of stress wave; then,
according to compressive nature of loop stress and also
the singularity of weight function, the SIF decreases
until it reaches a steady value.

Table 5
Temperature and hoop stress of CTE, GL,and GN theories at t′ = 0.3.

CTE GL GN
Dimensionless
radius

Temperature Hopp stress Temperature Hopp stress Temperature Hopp stress

0.82 0.110 0.181 0 0.725 0 0.742
0.84 0.218 0.131 0 0.713 0 0.730
0.86 0.323 0.082 1.077 -0.322 1.116 -0.349
0.88 0.426 0.036 1.056 -0.320 1.089 -0.340
0.9 0.527 -0.007 1.039 -0.318 1.066 -0.333
0.92 0.626 -0.050 1.025 -0.319 1.046 -0.328
0.94 0.722 -0.091 1.015 -0.322 1.031 -0.325
0.96 0.817 -0.129 1.008 -0.326 1.019 -0.324
0.98 0.909 -0.166 1.005 -0.332 1.011 -0.326
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Fig. 10. The effect of coupling thermoelastic param-
eter on GL (t′ = 0.5) and GN (t′ = 0.2) SIFs.

Heeding the coupled diagrams shown in Fig. 10 it
is evident that when the SIF curve discontinuity ap-
proaches to the inner surface (the short crack length),
the predicted maximum SIF becomes larger; in other
words, the maximum SIF through the crack length
is larger for short cracks compared with deep cracks
(which are close to the outer surface of cylinder). This
result indicates the vulnerability of the inner surface of
cylinder to creation and growth of cracks which is the
result of the assumed boundary conditions.
The SIF presented in Figs. 10 and 11 and also Table 6,
is dimensionless using the variable shown in equation
(40).

K =
(1− v)

EαTd
√
r0
KI (40)

Fig. 11 shows the effect of coupled thermoelastic
parameter on the SIF calculated by GL and GN theo-
ries for the surface points of semi-elliptical crack.It can
be seen that the SIF obtained by GL (since it is closer
to the inner surface of cylinder in comparison to GN
theory) is larger than that of GN theory. It was also
observed that in uncoupled case the SIFat the crack’s
surface points is larger than the coupled state. More-

over, the SIF at the crack’s surface points increases by
lengthening the relative crack length, thus it reaches
its maximum at the relative length of a/t = 0.8.

Table 6 compares the SIFs obtained by generalized
theories and CTE for the deepest and surface points of
a semi-elliptical crack at time t′ = 0.3. It can be de-
duced that SIF calculated by the generalized theories
is 1.9 times, at the deepest point of the crack, and 1.5
times, at the surface points of crack, larger than CTE.

According to the data presented in Table 6, predic-
tion of larger quantities by generalized theories based
on equation (33) leads to greater area under curve of
stress diagram at any moment and thus greater SIF.

Fig. 11. The effect of coupling thermoelastic param-
eter on GL (t′ = 0.5) and GN (t′ = 0.2) surface point
SIFs of semi-elliptical crack.

Fig. 12 and Fig. 13 represent the time variation of
G-L and G-N deepest point SIFs as a function of rel-
ative crack depth respectively. As represented, stress
wave is generated from cylinder outer surface and it
propagates toward the inner surface of cylinder. It is
observed that at a certain time, the stress intensity fac-
tor at the deepest point decreases as the relative depth
increases. An important fact in this problem is the
effect of applied thermal shock on the stress intensity
factors.

Table 6
Deepest and surface points SIFs based on CTE, GL and GN theories at t′ = 0.3.

Cracks relative length Deepest Surface Deepest Surface Deepest Surface
0.1 0.456 0.085 0.767 0.132 0.784 0.135
0.2 0.559 0.116 1.079 0.187 1.104 0.192
0.3 0.579 0.138 0.891 0.229 0.903 0.235
0.4 0.5497 0.156 0.535 0.254 0.531 0.260
0.5 0.481 0.170 0.292 0.270 0.280 0.275
0.6 0.385 0.182 0.104 0.280 0.089 0.286
0.7 0.266 0.192 -0.051 0.288 -0.066 0.293
0.8 0.127 0.200 -0.185 0.293 -0.199 0.298
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According to the figures, two different behaviors
may be recognized. The first part corresponds to the
cracks with small a/t (i.e., relative crack depths less
than about 0.2-0.3), in which the maximum stress in-
tensity factor at the deepest point occurs at small in-
stants of time and as the time elapses the stress in-
tensity factor becomes significantly smaller. The sec-
ond part relates to the deep cracks (i.e., relative depths
greater than about 0.2-0.3), where the maximum stress
intensity factor occurs in the steady state. In other
words, cracks with small depths are much more criti-
cal while subjected to thermal shock and crack growth
may occur under cooling condition at small times.

Furthermore, as a wave propagates toward inner
surface and time elapses, maximum SIF increases,
which refers to its stress distribution and force balance
equation. In other words, as the wave propagates to-
ward the internal surface, magnitude of stress in neigh-
borhood of internal surface of cylinder increases to rec-
ompense the force balance condition.

Fig. 12. Time variation of coupled G-L deepest point
SIFs.

Fig. 13. Time variation of coupled G-L surface points
SIFs.

Fig. 13 and Fig. 14 depict time variation of G-L

and G-N surface points SIFs as a function of relative
crack depth respectively. It is observed that stress in-
tensity factor has different behaviors at deepest point
and surface points where refers to the different weight
function for these points. As represented in the men-
tioned figures, it is seen that at a certain time, the
stress intensity factor at the corner points increases
with the increase of crack relative depth.

Fig. 14. Time variation of coupled G-N deepest point
SIFs.

Fig. 15. Time variation of coupled G-N surface points
SIFs.

Comparing the maximum SIF value at a certain
time in Fig. 12 (Fig. 13) with corresponding time in
Fig. 14 (Fig. 15), yields that G-N theory predicted
higher maximum stress intensity factor rather than G-
L theory, which refers to neglecting energy dissipation
in its governing equations. Figs. 16 and 17 show the
effect of aspect ratio a/c on the SIF at the deepest and
surface points of a semi-elliptical crack. It can be con-
cluded that reduction of crack aspect ratio causes the
maximum increase in SIF at the deepest and surface
points of a semi-elliptical crack.
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Fig. 16. The effect of crack aspect ratio on deepest
point SIFs based on GL theory.

Fig. 17. The effect of crack aspect ratio on surface
points SIFs based on GL theory.

According to Fig. 14, at a/c = 1 the semi-elliptical
crack deform into a half circle; in other words, the SIF
at the deepest and surface points of a semi-elliptical
crack decreases when the crack approaches the semi-
circle shape. Comparing among thermal SIFs at a/t =
0.5 for different crack aspect ratios shows that, the
crack with a/c = 0.4 has 9% higher thermal SIF than
crack with a/c = 1. Similarly, as shown in Fig. 17, for
a/t = 0.8 the SIF is 20% larger than the semi-circular
crack at the diagram discontinuity point.

6. Conclusions

In this paper, the SIF at the deepest and surface points
of a semi-elliptical crack existing on the inner surface
of a thick-walled cylinder, which is subjected to hyper-
bolic thermal shock according to GL and GN theories,
was obtained. The summary of results is as follows:

1. In cases where the heat flux boundary condition
is implemented on the cylinder, GL and GN theo-
ries predict completely different temperature dis-
tributions.

2. Considering the coupling effect in the governing
equations of generalized theories leads to a reduc-
tion in speed of heat and stress waves in compar-
ison to uncoupled case.

3. Considering the relaxation times in the govern-
ing equations of generalized theories would lead
to prediction of larger maximum values for tem-
perature, stress and thus SIF, when compared
with CTE theory.

4. SIF value through the crack length is larger for
short cracks. This shows that the inner surface
of the cylinder is more susceptible to crack ini-
tiation and growth in comparison to the outer
surface.

5. Atinitial times after applying the thermal shock,
the SIF predicted by the generalized theories at
the deepest point of shallow cracks is muchlarger
than CTE theory. The maximum SIF at the
crack’s deepest point occurs when the stress wave
front reaches the crack tip.

6. SIF at the cracks deepest point increases at first,
then gradually decreases to a steady value.

7. For shallow cracks, the aspect ratio does not ex-
ert much influence on its behavior. But with the
passage of time and the deepening of the crack,
the effect of aspect ratio on SIF increases.

8. The SIF anticipated by the generalized theories
for the crack’s surface points is always larger than
that of CTE theory. This issue can be of drastic
importance when predicting the unstable crack
growth. Longitudinal growth of crack reduces the
diametric aspect ratio and thus increases the SIF
at the crack’s deepest point.

9. GL and GN theories predict similar results
for temperature, stress, and SIF when thermal
boundary condition of type I is implemented.
The minor difference in their results arises from
disregarding the lossin GN theory.

According to different results of generalized theories
and CTE theory for a crack under thermal loading,
choosing the appropriate theory for thermoelastic anal-
ysis and design of structures is of particular impor-
tance.

Appendix

The inverse Laplace transform of function f̃(s) is de-
fined by equation (41)

f(t) = £−1{f̃(s)} =
1

2πi

∫ v+i∞

v−i∞
f̃(s)estds (41)
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where, i =
√
−1 and s = v + iw. v is an arbitrary real

value which is greater than the real part of all singu-
lar points of function f̃(s). Equation (41) can also be
expressed as below.

f(t) =
evt

π

∫ ∞

0

[Re{f̃(s)} coswt− Im{f̃(s)} sinwt]dw (42)

An approximate equation is proposed for calculating
the Laplace transform of function f(t) by using Fourier
expansion of g(t) = e−vtf(t) in the interval [0, 2π].

f(t) =
evt

π

[
− 1

2
Re{f̃(s)}+

∞∑
n=0

Re
{
f̃
(
v + i

nπ

τ

)}
cos

nπ

τ
t

−
∞∑

n=0

Im
{
f̃
(
v + i

nπ

τ

)}
sin

nπ

τ
t

]
− E1(v, t, τ) (43)

E1 (v, t, τ) is the discretization error which can be is
expressed as

E1(v, t, τ) =
∞∑

n=1

e−2nvτf(2πτ + t) (44)

The discretization error can be reduced by choosing
larger values for v. Approximating infinite series in
(43) by N terms, causes another error in computation
known as accumulation error.

f(t) =
evt

τ

[
− 1

2
{f̃(s)}+

N∑
n=0

Re
{
f̃
(
v + i

nπ

τ

)}
cos

nπ

τ
t

−
∞∑

n=0

Im
{
f̃
(
v + i

nπ

τ

)}
sin

nπ

τ
t

]
− E1(v, t, τ)

+ E2(N, v, t, τ) (45)

The accumulation error is expressed as follows:

E2(N, v, t, τ) =
evt

τ

(
∞∑

n=N+1

Re
{
f̃
(
v + i

nπ

τ

)}
cos

nπ

τ
t

−
∞∑

n=N+1

Im
{
f̃
(
v + i

nπ

τ

)}
sin

nπ

τ
t

)
(46)

In [27] a method of correction is proposed to reduce
discretization and accumulation error. According to
equation (44), discretization error can be reduced by
setting a larger value for vτ . On the other hand, ex-
tremely large values for vτ may cause the divergence
of accumulation error described in equation (45). The
method proposed in [27] leads to a reduction of dis-
cretization error without any increase in the accumu-
lation error. Moreover, an optimal estimation of v,
by the use of the constants N and τ , is resulted. In
this method, the optimum value for v is achieved by
minimizing the summation of discretization and accu-
mulation errors.
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