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Abstract

In this paper, a semi-analytical method for creep investigation and elastic
behavior of FGM rotary cylinders has been introduced. Assumed cylinder was
divided to numerous finite width layers with constant thermodynamic prop-
erties in each layer. Governing equations converted to ordinary differential
equations with constant coefficients by applying continuity conditions between
layers and boundary conditions of disc in derived equations, then these
equations could be solved by a prepared computer code. For thermo-elastic
part, variation of dimensionless radial and circumferential strains versus
dimensionless radius investigated for several power of FGM material. Also,
verification of results was done. For creep part, variation of dimensionless
radial and circumferential strain rates versus dimensionless radius was studied
for different temperatures and limited timeframe. Changes of radial and
circumferential strain rates versus radius were investigated and the results
were validated. Finally, the effects of various parameters on creep behavior of
rotary cylinder in several examples was examined.

Nomenclature

κ, ζ Material constants for creep u Radial displacement
u̇ Radial displacement rate ν Poison ratio
q Constant of material ∆T Temperature gradient in cylinder
L, h Length and walled thickness of cylinder n Power of functional graded material
Ri, Ro Inner and outer radii of cylinder ω Angular velocity of cylinder
Z A column matrix εrr, εθθ Radial and tangential strains
z, θ, r Components of axial, circumferential

and radial directions
Pr Typical material property

Po, Pi Property at the inner and outer surfaces
of cylinder

ε̇rr, ε̇θθ Strains rate of radial and tangential

˙σrr, ˙σθθ Radial and tangential stresses rate ˙σzz, Axial stress rate
σeff Effective stress Z̄k

1 , Z̄
k
2 Unknown coefficients of the layer k

τ Creep time ∆τ Time step
E(r), υ(r) Elastic modulus and Poison ratio in an

arbitrary radius
ε̇rr,c Creep strain rate in radial direction
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ε̇θθ,c Creep strain rate in tangential direction εcr, εcθ Creep strain in radial and tangential di-
rections

Ēi, Ēo Inner and outer lateral surfacesdimen-
sionless elasticity modulus

Ē(r) Dimensionless elasticity modulus in an
arbitrary radius

ρin, ρout Inner and outer lateral surfaces density
of cylinder

αin, αout Inner lateral and outer surfaces thermal
expansion coefficient of cylinder

υin, υout Inner and outer lateral surfaces poison
ratio of cylinder

Kin,Kout Thermal conductivity coefficient in in-
ner and outer lateral surfaces of cylin-
der

Al, Cer Aluminum and Cerami ∆Ti,∆To Temperature gradient in inner and
outer lateral surfaces of cylinder

1. Introduction

Recently, by development and growth of powerful en-
gines, turbines, reactors and other machinery, heat and
mechanically resistant materials are required. Because
of some existing issues in different industries for sub-
jecting materials to high heat stresses, Japanese mate-
rial scientists in Sundae, for the first time, suggested
FG (Functional Graded) materials as high heat resis-
tant materials [1]. FG materials are composite ma-
terials with inhomogeneous microstructure that their
mechanical properties change from plate to plate in
the body smoothly and have certain variations in the
material properties. According to composition type,
mechanical properties have also continuous variations
in thickness direction. Such materials have more effec-
tive mechanical properties than layer composite ma-
terials, because of continuous composition of former
ones. These materials are used in the following applica-
tions: In various industries including aerospace (Cape
missiles, jet engines), the automotive industry (Hybrid
cars), marine industries, construction of advanced tur-
bines.

Generally, to obtain main results, stress in plate,
disc, and cylinder should be determined. Sing and Rey
[2,3] described steady-state creep analysis of a inho-
mogeneous rotary cylinder made from composite ma-
terials, including silicon carbide particles in special alu-
minum matrix, by using Hill yielding criterion and Nor-
ton law. Material creep parameters of their assumed
disc were changing with radius because of proportional
variation in composition of silicon carbide particles in
the aluminum matrix. Howie shen investigated post-
buckling analysis of cylinder panels axially loaded in
thermal ambient. This analysis was conducted for FG
cylinder panel with finite length [4]. Leo Jacob [5] stud-
ied thermoelastic analysis and optimization of plates
and FG shells. He used meshless and finite element
methods.

Li Yu et al. [6] presented a semi-analytical method
for analysis of thermoelastic behavior of hollow cylin-
ders made from targeted materials. They considered
constant material properties by dividing cylinder to
several cylinders in the radial direction and simplifying
equations to solve. Gupta and Singh [7] had studied

anisotropy effect of FG steady-state creep.
In the other study [9] for rotating cylinder, all of

the material properties were assumed to be exponen-
tially graded along radius. A semi-analytical solution
(the method of successive approximation) was devel-
oped to obtain history of stresses and deformations
during creep evolution of the EGM rotating cylinder. A
comprehensive comparison was made between creep re-
sponse of homogenous and non-homogenous cylinders.
It has been concluded that the material in-homogeneity
parameter has a considerable effect on the thermoelas-
tic and creep response of rotating cylinders made of
EGMs.

Ghannad et al. [10] investigated an elastic analysis
for FGM thick cylindrical shells having axially linear
varying thickness utilizing the FSDT. The governing
equations in the axisymmetric case and elasto-static
state, which are a system of ODE with variable coef-
cients, were solved analytically using the MAM of the
perturbation theory.

Nejad and co-workers [11] investigated time-
dependent thermo-elastic creep response for isotropic
rotating thick-walled cylindrical pressure vessels made
of functionally graded material. Moreover, a semi-
analytical method was applied for the purpose of elastic
analysis of rotating thick cylindrical shells with vari-
able thicknesses made of axially functional graded ma-
terial under non-uniform pressure and derived a semi-
analytical solution for determination of displacements
and stresses in a thick cylindrical shell with variable
thicknesses under non-uniform pressure [12-14]. In
the study of Jabbari and co-workers [15], the material
properties, except the Poisson’s ratio, were assumed to
vary with the power law function in the axial direc-
tion of the pressure vessel. The effects of higher-order
approximation on the radial and axial displacements,
Von-Mises, and shear stresses were studied. Also, the
effects of mechanical and thermal loading, thickness
profile type, and gradient index on the mechanical be-
havior of the cylindrical pressure vessel were examined.

Loghman et al. [16] using Burgers viscoelastic creep
model, studied history of strains, stresses, and displace-
ments of a rotating cylinder made of polypropylene
reinforced by multi-walled carbon nanotubes (MWC-
NTs) under magneto-thermo-mechanical loading; it
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was discoverded that radial displacement, tangential
strain, and absolute values of radial strain increase
with time at a decreasing rate, finally, approaching the
steady-state conditions; effective stresses decreasing at
the inner and increase at the outer surface of the cylin-
der.
Garg and co-workers [17] investigated the steady-state
creep in a rotating FGM disc with linearly varying
thickness by using von-Mises yield criterion; it was
shown that when the FGM disc is subjected to a radial
TG (Thermal Gradient), with temperature and radius
increasing simultaneously, the radial stress increases
over the entire disc but the tangential and effective
stresses increase near the inner radius and decrease to-
ward the outer radius. Furthermore, the creep strain
rates in rotating FGM disc could be significantly re-
duced when the disc is subjected to a radial TG, with
temperature and radius increasing simultaneously.

In the other research [18] distributions of stress and
strain components of rotating discs with non-uniform
thickness and material properties subjected to thermo-
elastoplastic loading were obtained by semi-exact Liaos
homotopy analysis method (HAM) and finite element
method (FEM). The materials were assumed to be
elastic-linear strain hardening and isotropic. The anal-
ysis of rotating disk was based on Von Mises yield cri-
terion. A 2D plane stress analysis was used. The dis-
tribution of temperature was assumed to have power
forms with the hotter point located at the outer surface
of the disk.

Garg et al. [19] studied the steady-state creep be-
havior of a rotating FGM disc having linearly vary-
ing thickness. The disc was assumed to be made of
functionally graded composite containing non-linearly
varying radial distribution of silicon carbide particles
in a matrix of pure aluminum. It was observed that
the radial and tangential stresses induced in the FGM
disc decrease throughout with the increase in thickness
gradient of the disc. The strain rates also decrease with
the increase in thickness gradient of the FGM disc, with
a relatively higher decrease near the inner radius. The
increase in disc thickness gradient results in relatively
uniform distribution of strain rates and hence reduces
the possibility of distortion in the disc.

Khanna and co-workers studied [20] steady-state
creep in a rotating Al-SiCp disc with different thick-
ness profiles and reinforcement (SiCp) gradients. They
assumed the disc material to creep according to
threshold-stress based law and yield following Tresca
criterion. The stress and strain rates in the disc
were calculated by using the disc equilibrium equa-
tions along with creep constitutive equations. It was
observed that on the increase of the disc thickness gra-
dient, the radial stress declines towards the inner ra-
dius but increases towards the outer radius, whereas
the tangential stress decreases over the entire radius.
Also, the composite disc having higher thickness and

higher reinforcement gradients exhibits lesser distor-
tion.

Previous works on this topic have been done more
for rotary discs, but in the present research, cylinder
made of functional graded materials was investigated
that this issue is new in terms of geometry. To solve
this problem, the semi-analytical method was used
which is different from the method used in other re-
searches.

In this research, analysis of creep behavior of Func-
tional Graded (FG) rotary cylinder was considered
(Fig. 1). Derived equations originated from thermo-
elasticity theory for FG rotary cylinder by using their
displacement equation. According to Norton law (Eq.
(1)), also steady-state creep equation of cylinder de-
duced:

εcr = κσζ
effτ

q (1)

in which κ and ζ are material constants for creep.

Fig. 1. Schematic view of a cylinder made of FGM
material.

In Fig.1 an FGM cylinder with free constraint sup-
ported without tangential force, length L, wall thick-
ness h, inner radius Ri and outer radius Ro which ro-
tates with constant angular velocity ω and loaded ther-
mally is considered. In the present research, creep anal-
ysis of rotary cylinder made of inhomogeneous materi-
als was conducted. To investigate the effect of impor-
tant parameters such as gradual change in thermome-
chanical properties, centrifugal force, thermal loading
on stresses, displacements and creep rate of symmet-
rical rotary inhomogeneous cylinder, an exact method
has been suggested. Using this method allows to solve
governing equations without any simplification such as
considering some properties or coefficients to be con-
stant in radial direction which often considered in creep
analysis of inhomogeneous cylinders in mechanic liter-
ature. moreover, there is no need to regard derivative
of material properties which appeared in equations.

Equilibrium equations based on thermo-elasticity
theory for a rotary inhomogeneous cylinder were de-
rived. And then used displacement equation was de-
duced. To obtain temperature distribution in cylin-
der, nonlinear heat transfer equation in radial direc-
tion was used. Also by using Norton law, equation of
steady-state creep for cylinder was derived. To solve
derived equations, assumed cylinder was divided into
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many layers with finite thicknesses in radial direction
and constant thermo-mechanic properties in each layer.
By applying continuous conditions between layers and
general boundary conditions in obtained equations, a
set of algebraic equations would be derived. Cylindri-
cal coordinate system which is placed in the cylinder
center layer was used and components z, θ and r are
axes, circumferential and thickness directions respec-
tively.

2. Modeling

2.1. Variation of Property in Inhomogeneous
Materials

The most common applicant model is volume propor-
tional distribution based on the power law. In this
model main assumption is that volume proportion of
contributing materials of structure varies just in one
direction. For instance, in the body, in thickness direc-
tion, mechanical property variation profiles along r is
considered as a polynomial of degree n [21].

Pr = (P0 − Pi)

(
r −Ri

R0 −Ri

)n

+ Pi (2)

Dimensionless form of the above equation is [21]:

Pr

Pi
=

(
P0

Pi
− 1

)(
r −Ri

R0 −Ri

)n

+ 1 (3)

which Pr represents typical material property, Po and
Pi indicate property at the inner and outer surface of
the cylinder respectively. The power n depends on ma-
terial variation which is variation profile in the thick-
ness direction.

2.2. Governing Thermoelectricity Equations of
the FGM Rotary Cylinder Behavior

Consider a cylinder with constant angular velocity ω.
It was assumed that this cylinder is under a symmet-

rical and variable thermal gradient in radial direction.
Volumetric body forces because of centrifugal forces are
equal to ρrω2. Since forces were symmetric and func-
tions of radius, shear stress was zero whereas radial and
tangential stresses were radius functions. Plane strain
will be dominated whenever the cylinder length is long
enough, then the problem will be solved by plane stress
assumption. The strain-displacement relations in ho-
mogeneous rotary cylinder is:

εrr =
du

sr
, εθθ =

u

r
(4)

In which u is radial displacement, εrr and εθθ are radial
and tangential strains respectively. Also stress-strain
relations for plane strain conditions are followed by:

σrr =
E(r)(1− ν(r))

1− ν(r) − 2ν2
(r)

×

[(
εrr +

ν(r)

(1− ν(r))
εθθ

)
−
(
1 +

ν(r)

(1− ν(r))

)
α(r)∆T(r)

]
(5)

σθθ =
E(r)(1− ν(r))

1− ν(r) − 2ν2
(r)

×

[(
εθθ +

ν(r)

(1− ν(r))
εrr

)
−
(
1 +

ν(r)

(1− ν(r))

)
α(r)∆T(r)

]
(6)

σzz = v(σrr + σθθ) (7)

The equilibrium equation for axial symmetric stress
is:

dσrr

dr
+

σrr − σθθ

r
+ ρrω2 = 0 (8)

In which ρrω2 is volumetric body force because of cen-
trifugal force. By substituting Eq. (4) in Eqs. (5)-(7)
and then in Eq. (8) results Navier thermoelastic equa-
tion are follows:

[
E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

]
d2u

dr2
+


ν(r)

(1 − ν(r))

r

(
E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

)
+

1

r

(
E(r)

(1 + ν(r))

)
+

d

dr

(
E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

) du

dr
+

−
ν(r)

(1 − ν(r))

r2

(
E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

)
−

1

r2

(
E(r)

1 + ν(r)

)
+


ν(r)

(1 − ν(r))

r

 d

dr

(
E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

)
+

1

r

d

(
ν(r)

(1 − ν(r))

)
dr

(
E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

)u

+

[
−
(

E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

)
d

dr

[(
1 +

ν(r)

(1 − ν(r))

)
α(r)∆T(r)

]
+ ρ(r)rw

2 −
d

dr

(
E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

)(
1 +

ν(r)

(1 − ν(r))

)
α(r)∆T(r)

]
= 0 (9)

2.3. The Governing Relations of FGM Rotary
Cylinder Creep Behavior

Geometrical relation between strains and rate of radial
displacement is:

εrr =
du̇

dr
, ε̇θθ =

u̇

r
(10)

According to Norton law, stress-strain rate relationship
is:

σ̇rr =
E(r)(1− ν(r))

1− ν(r) − 2ν2(r)

[(
ε̇rr +

ν(r)

(1− ν(r))
ε̇θθ

)
−
(
ε̇rr,c +

ν(r)

(1− ν(r))
ε̇θθ,c

)]
(11)
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σ̇θθ =
E(r)(1− ν(r))

1− ν(r) − 2ν2(r)

[(
ε̇θθ +

ν(r)

(1− ν(r))
ε̇rr

)
−
(
ε̇θθ,c +

ν(r)

(1− ν(r))
ε̇rr,c

)]
(12)

σ̇ = ν(σ̇rr, σ̇θθ) (13)

In which:

ε̇rr,c =
κσζ−1

eff

2q
(2σrr − σθθ)

(
εcr

κσζ
eff

) q−1
q

(14)

ε̇θθ,c =
κσζ−1

eff

2q
(2σθθ − σrr)

(
εcr

κσζ
eff

) q−1
q

(15)

And

σeff =
√
σ2
rr − (σrr × σθθ) + σ2

θθ (16)

By using Eq. (8), equilibrium equation for stress rates
will be:

dσ̇rr

dr
+

σ̇rr − σ̇θθ

r
= 0 (17)

Substituting Eq. (10) in Eq. (11) and Eq. (12) and
then in Eq. (17) results governing equation of FGM
rotary cylinder creep behavior are followed by:

[
E(r)(2 − ν(r))

1 − ν(r) − 2ν2
(r)

]
d2u̇

dr2
+


ν(r)

(1 − ν(r))

r

(
E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

)
+

1

r

(
E(r)

1 + ν(r)

)
+

d

dr

(
E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

) du̇

dr

+

−
ν(r)

(1 − ν(r))

r

(
E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

)
−

1

r2

(
E(r)

1 + ν(r)

)
+


ν(r)

(1 − ν(r))

r

 d

dr

(
E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

)
+

1

r

d
ν(r)

(1 − ν(r))

dr

(
E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

) u̇

+

−
(

E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

) d
ν(r)

(1 − ν(r))

dr
−
(

E(r)

1 + ν(r)

)
1

r
−

d

dr

(
E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

) ε̇θ,c

+

[(
E(r)

1 + ν(r)

)
1

r
−

ν(r)

(1 − ν(r))

d

dr

(
E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

)]
ε̇θ,c

+

[
−

ν(r)

(1 − ν(r))

(
E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

)]
dε̇θ,c

dr
+

[
−
(

E(r)(1 − ν(r))

1 − ν(r) − 2ν2
(r)

)]
dε̇θ,c

dr
= 0 (18)

2.4. Boundary Conditions

The boundary condition problems will be reviewed in
three different cases then introduced briefly in the fol-
lowing.

2.4.1. Hollow Cylinder with Free Edges

It was assumed that inner and outer cylinder surfaces
are free and without any constraint; also they are not
subjected to external forces. Hence these boundary
conditions are applied to the cylinder as follows:

σrr = 0 at t = Ri

σrr = 0 at t = Ro

(19)

2.4.2. Hollow Cylinder with Fixed-Free Edges

It was assumed that the cylinder has no radial displace-
ment in the inner surface but the outer surface is free

and there is no movement constraint.

u = 0 at r = Ri

σrr = 0 at t = Ro

(20)

2.4.3. Filled Cylinder with Free Edges

It was assumed that the cylinder has no radial dis-
placement in its centerline (cylinder is assumed filled)
but the outer surface is free and there is no movement
constraint.

u = 0 at r = 0

σrr = 0 at r = Ro

(21)

2.5. The Solving Algorithm

Direct solving of Eq. (9) and Eq. (18) is impossible be-
cause all of the parameters are functions of rotary cylin-
der radius, r. Hence some simplifying or special solving
methods are required to solve the equations. In this re-
search, a semi-analytical method to solve recent equa-
tions has been introduced. Here the solving method
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for governing equations of FGM rotary cylinder creep
(Eq. (18)) is introduced and for solving Navier ther-
moelastic, Eq. (9), a similar method is applied. In this
method, the studying cylinder is divided into many lay-
ers with tk thickness that superscript k, indicates layer
k. By considering constant material properties in each
layer and replacing rk rather than r which rk indicates

mean radius of layer k, In the desired relation, Eq. (18)
converts to ordinary differential equation with constant
coefficients as follows:(

c̄k1
d2

dr2
+ c̄k2

d

dr
+ c̄k3

)
u̇k + c̄k1 = 0 (22)

In which:

c̄k1 =
E(r)(1− ν(r))

1− ν(r) − 2ν2
(r)

(23a)

c̄k2 =

ν(r)
(1− ν(r))

rk

(
E(r)(1− ν(r))

1− ν(r) − 2ν2
(r)

)
+

1

rk

(
E(r)(1− ν(r))

1− ν(r) − 2ν2
(r)

)
+

d

dr

(
E(r)(1− ν(r))

1− ν(r) − 2ν2
(r)

)∣∣∣∣
r=rk

(23b)

c̄k3 =

ν(r)
(1− ν(r))

rk

(
E(r)(1− ν(r))

1− ν(r) − 2ν2
(r)

)
1

h(rk)

dh(r)

dr

∣∣∣∣
r=rk

−

ν(r)
(1− ν(r))

rk2

(
E(r)(1− ν(r))

1− ν(r) − 2ν2
(r)

)
− 1

rk2

(
E(rk)

1 + ν(rk)

)

+


ν(r)

(1− ν(r))

rk

 d

dr

(
E(r)(1− ν(r))

1− ν(r) − 2ν2
(r)

)∣∣∣∣
r=r4

+
1

rk

(
E(r)(1− ν(r))

1− ν(r) − 2ν2
(r)

) d
ν(r)

(1− ν(r))

dr

∣∣∣∣
r=r4

(23c)

c̄4
k =

−( E(r)(1− ν(r))

1− ν(r) − 2ν2
(r)

) d
ν(r)

(1− ν(r))

dr

∣∣∣∣
r=r4

− 1

rk

(
E(rk)

1 + ν(rk)

)
− d

dr

(
E(r)(1− ν(r))

1− ν(r) − 2ν2
(r)

)∣∣∣∣
r=rk

 ε̇rr,c

+

[
1

rk

(
E(rk)

1 + ν(rk)

)
−

ν(r)
(1− ν(r))

× d

dr

(
E(r)(1− ν(r))

1− ν(r) − 2ν2
(r)

)∣∣∣∣
r=rk

]
ε̇θ,θ,c

+

[
−

ν(r)
(1− ν(r))

(
E(r)(1− ν(r))

1− ν(r) − 2ν2
(r)

)]
dε̇rr,c
dr

+

[
−

(
E(r)(1− ν(r))

1− ν(r) − 2ν2
(r)

)]
dε̇θθ,c
dr

(23d)

To calculate value of
dε̇rr,c
dr and

dε̇θθ,c
dr following re-

lations are used:(
dε̇rr,c
dr

)
= (ε̇k+1

rr,c − ε̇krr,c)
/
(rk+1 − rk) (24)(

dε̇θθ,c
dr

)k+1

= (ε̇k+1
θθ,c − ε̇kθθ,c)

/
(rk+1 − rk) (25)

The Eq. (22) can be written for any layer distinctly.
So if the cylinder has m layers, there are m ordinary
differential equations with constant coefficients. The
advantage of using this method is that an exact solu-
tion of Eq. (22) exists as:

u̇k
(r) = z̄k1 exp(λ

k
1r) + z̄k2 exp(λ

k
2r)−

c̄k4
c̄k3

rk − tk

2 ≺ r ≺ rk + tk

2

(26)

In which:

λk
1 , λ

k
2 = −

 c̄k2 ±
√

c̄k
2

3 − 4c̄k1 c̄
k
3

2c̄k1

 (27)

The coefficients specified as Z̄k
1 and Z̄k

2 are unknown
coefficients of the layer k in the equation. By applying

boundary conditions between any two adjacent layers
which are the same for stress and displacement rate
continuity in the radial direction of that layers as well:

u̇k

(rk+ tk

2 )
= u̇k+1

(rk+1− tk+1

2 )
(28)

σ̇k
rr

∣∣∣∣
r=rk+ tk

2

= σ̇k+1
rr

∣∣∣∣
r=rk+1− tk+1

2

(29)

A set of m equations will be obtained from apply-
ing boundary conditions in Eq. (26) with continuity,
Eq. (28) and Eq. (29) are represented as follows:

[F ]m×m[Z]m×1 = [G]m×1 (30)

in which matrix Z is a column matrix that its arrays
are unknown values of the equation. Square matrix F
and column matrix G will derive from continuity condi-
tion among layers as well as the whole cylinder. There
is a solution method for the cylinder with boundary
conditions in Eq. (31) and the same manner for other
boundary conditions is applied.

σ̇rr = 0 at t = Ri

σ̇rr = 0 at t = Ro

(31)
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By substituting the cylinder inner surface boundary
conditions in Eq. (26), the equation of radial displace-
ment rate will be:

u̇1
(Ri)

= Z̄1
1 exp(λ1r) + Z̄1

2 exp(λ2r)−
c̄14
c̄13

(32)

By putting u̇1
(Ri)

taken from above in Eq. (10) and

then in Eq. (11), radial stress rate in the surface of
cylinder will be obtained zero according to the bound-
ary conditions:

Ei(1− νi)

1− νi − 2ν2
i

[
Z̄1

1λ
1
1 exp(λ

1
1Ri) + Z̄1

2λ
1
2 exp(λ

1
2Ri)+

((
νi

(1− νi)

)
/Ri

)(
Z̄1

1λ
1
1 exp(λ

1
1Ri) + Z̄1

2 exp(λ
1
2Ri)−

c̄14
c̄13

)

−
(
ε̇1rr,c +

νi
(1− νi)

ε̇1θθ,c

)]
= 0 (33)

So the values of F11 and F12 and G1 are:

F11 =
Ei(1− νi)

1− νi − 2ν2i

[
λ1
1 exp(λ

1
1Ri) +

(
νi

Ri(1− νi)

)
exp(λ1

1Ri)

]

F12 =
Ei(1− νi)

1− νi − 2ν2i

[
λ1
2 exp(λ

1
1Ri) +

(
νi

Ri(1− νi)

)
exp(λ1

2Ri)

]

G1 =
Ei(1− νi)

1− νi − 2ν2i

[(
νi

(1− νi)

)
−

c̄14
c̄13

+

(
ε̇1rr,c +

νi

(1− νi)
ε̇1θθ,c

)]
(34)

The radial stress relation in the cylinder outer surface
will be obtained in the same manner by using the above
values F(2m)(2m−1), F(2m)(2m), and G(2m), represented

as follows:

F(2m)(2m−1) =
Eo(1− νo)

1− νo − 2ν2o

[
λm
1 exp(λm

1 Ro) +
νo

R0
exp(λm

1 Ro)

]

F(2m)(2m) =
E0(1− νo)

1− νo − 2ν2o

[
λm
2 exp(λm

1 Ro) +
νo

R0
exp(λm

2 Ro)

]

G(2m) =
Eo(1− νo)

1− νo − 2ν2o

[(
νo

R0(1− νo)

)
c̄m4
c̄m3

+(
ε̇mrr,c +

(
νo

(1− νo)

)
ε̇mθθ,c

)] (35)

By putting Eq. (26) in continuity condition of radial
displacement rate (Eq. (28)), values of the F(2k)(2k−1),
F(2k)(2k) and G(2k) are:

F(2k)(2k−1) = exp

(
λk
1

(
rk +

tk

2

))

F(2k)(2k) = exp

(
λk
2

(
rk +

tk

2

))

F(2k)(2k+1) = − exp

(
λk+1
1

(
rk+1 +

tk+1

2

))
(36)

F(2k)(2k+2) = − exp

(
λk+1
2

(
rk+1 +

tk+1

2

))

G(2k) =
c̄m4
c̄m3

− c̄k+1
4

c̄k+1
3

Also by putting Eq. (26) in continuity condition
of radial stress rate, Eq. (28), the values of arrays
F(2k+1)(2k−1), F(2k+1)(2k), F(2k+1)(2k+1), F(2k+1)(2k+2)

and G(2k+1) are:

F(2k+1)(2k−1) =
E(rk)(1− ν(rk))

1− ν(rk) − 2ν2
(rk)

[
λk
1 exp

(
λk
1

(
rk +

tk

2

))
+

((
ν(rk)

1− ν(rk)

)/(
rk +

tk

2

))
exp

(
λk
1

(
rk +

tk

2

))]
(37a)

F(2k+1)(2k) =
E(rk)(1− ν(rk))

1− ν(rk) − 2ν2
(rk)

[
λk
2 exp

(
λk
2

(
rk +

tk

2

))
+

((
ν(rk)

1− ν(rk)

)/(
rk +

tk

2

))
exp

(
λk
2

(
rk +

tk

2

))]
(37b)

F(2k+1)(2k+1) =
E(rk+1)(1− ν(rk+1))

1− ν(rk+1) − 2ν2
(rk+1)

[
λk+1
1 exp

(
λk+1
1

(
rk+1 − tk+1

2

))

+

((
ν(rk+1)

1− ν(rk+1)

)/(
rk+1 − tk+1

2

))
exp

(
λk+1
1

(
rk+1 − tk+1

2

))]
(37c)

F(2k+1)(2k+2) =
E(rk+1)(1− ν(rk+1))

1− ν(rk+1) − 2ν2
(rk+1)

[
λk+1
2 exp

(
λk+1
2

(
rk+1 − tk+1

2

))

+

((
ν(rk+1)

1− ν(rk+1)

)/(
rk+1 − tk+1

2

))
exp

(
λk+1
2

(
rk+1 − tk+1

2

))]
(37d)
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G2k+1 =
E(rk)(1− ν(rk))

1− ν(rk) − 2ν2
(rk)

[((
ν(rk)

1− ν(rk)

)/(
rk +

tk

2

))(
c̄k4
c̄k3

)
+

(
ε̇krr,c +

(
ν(rk)

1− ν(r4)

)
ε̇θθ,c

)]

−
E(rk+1)(1− ν(rk+1))

1− ν(rk+1) − 2ν2
(rk+1)

[((
ν(rk+1)

1− ν(rk+1)

)/(
rk+1 − tk+1

2

))
c̄−k+1
4

c̄−k+1
3

+

(
ε̇k+1
rr,c +

(
ν(rk+1)

1− ν(rk+1)

ε̇k+2
θθ,c

))]
(37e)

So the values of matrixes F and G are specified. In
order to obtain unknown coefficient (matrix Z), it is
required to multiply inverse of matrix F in matrix G.
It means that:

[Z] = [F ]−1[G] (38)

So the values of Z̄2, Z̄1 are specified for each layer. By
substituting Z̄k

1 , Z̄
k
2 in Eq. (26), radial displacement

rate is determined in any disc point. By specifying
radial displacement rate, the stress rates, also, radial
and tangential strain rates, can be determined in any
cylinder point. Notice that in this study the nonlin-
ear heat transfer equation in radial direction of FGM
rotary cylinder was extracted to calculate the cylinder
temperature distribution; in order to solve it, a simi-
lar method was employed which was presented before
in Eq. (18). An appropriate algorithm solution is re-
quired to solve the creep governing equation of FGM
rotary cylinder which is described in the following. Ac-
cording to this algorithm, solution steps for creep anal-
ysis of rotary cylinder made of FG material are:
Step 1: Calculate temperature distribution of the
whole disc.
Step 2: Calculate disc displacement and stress-strain
distributions.
Step 3: Calculate radial and tangential strain rate dis-
tributions using transient creep coefficients.
Step 4: Calculate radial displacement rate distribu-
tions and stress rate distribution.
Step 5: Select appropriate time step (∆τ) and then
calculate new stresses and strains in radial and tangen-
tial directions:

(σrr)New = (σ̇rr)old∆τ + (σrr)old

(σθθ)New = (σ̇θθ)old∆τ + (σθθ)old

(εrr)New = (ε̇)old∆τ + (εrr)old

(εθθ)New = (ε̇θθ)old∆τ + (εθθ)old

(39)

Step 6: Repeat steps 4 through 8 until radial and
tangential stress distribution rates converge to an in-
variant value.
Step 7: Calculate radial and tangential strains rate
distribution using transient creep coefficients.
Step 8: Calculate radial displacement and stress rates
distribution.

3. Results and Discussion

In this section, results of creep analysis of the FGM
cylinder from the study was extracted and verified with
results from references. In the following, parametric
study of structure was conducted, in order to inves-
tigate geometrical and mechanical specification effects
on the cylinder behavior.

3.1. Verification

In this part, the results of the FGM cylinder creep
analysis are compared with the results derived from
appropriate references.

3.1.1. First Example

In this example, the study results are compared to
creep analysis results of the FGM rotary cylinder pro-
vided by Sing and Rey [2]. The disc boundary condi-
tions are:

Ri = 31.75mm, Ro = 152.4mm

∆Ti = ∆To = 5610k,

w = 15000rpm

This comparison was made for radial and tangential
displacement rates which is shown in Figs. 2 and 3.
As shown, a good agreement is established between
the research results and the mentioned article.

Fig. 2. Comparison between radial displacement rate
distribution results and the results in [2]. Ω = ε̇r(s

−1)
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Fig. 3. Comparison between tangential displace-
ment rate distribution results and the results in [2].
Ω = ε̇θ(s

−1)

In Figs. 2 and 3, in special case, by considering
plain strain assumption and taking a thin layer of creep
investigated., the results of the research and ref.2 are
consistent. In general, model (rotating cylinder) and
method (semi-analytical) used in the present study are
different to the existing references. Also, the rotating
cylinder creep is investigated in this paper, while in the
ref. 2 creep for thin disc has been investigated.

3.1.2. Second Example

A rotary disc with dimensionless elasticity modulus is
considered as below:

Ē(r) = Ēi + (R̄o − Ē)

(
r −Ri

Ro −Ri

)n

(40)

In which Ēi, Ēo are dimensionless elasticity modulus of
the inner and outer disc layer ingredients respectively.
J.F. Durodola and co-workers [8] used two methods,
the direct integrating method and the finite element
method, to solve the governing equations. To com-
pare results, Ēi =

2
3 , Ēo = 1, n = 1, Ro = 5Ri and

double-edge disc boundary conditions were considered.
To verify provided results, the dimensionless displace-
ment and stress distribution curves in radial direction,
shown in Figs. 4 and 5, were used.

Fig. 4. Comparison between radial stress distribution
and finite element method results. Ω = σr/ρmw2R2

o

Fig. 5. Comparison between radial displacement dis-
tribution and finite element method results.
Ω = urEm/ρmw2R2

o

As it can be seen, a good agreement exists between
the research results and the result induced from the
finite element method in the mentioned article.

3.1.3. Parametric Study and Creep Analysis
Results Presentations of a Symmetric
Loaded FGM Cylinder

In this section, effects of various parameters on creep
analysis of FGM cylinder are investigated. In the two
following examples, the effects of power of FG proper-
ties variation function, n, and thermal gradient mag-
nitude on creep behavior of the FGM rotary cylinder
are studied. In the examples, aluminum and zirconium
were used as metal and ceramic on the inner and outer
cylinder surfaces respectively with their specifications
listed as below:

αin = αAl = 2.3× 10−5/K,

αout = αCer = 1× 10−5 1
0K

Ein = EAl = 70Gpa, Eout = ECer = 151Gpa

νin = νAl = 0.33, νout = νCer = 0.31

Kin = KAl = 209
j

kg ·0 K
, Kout = KCer = 2

j

kg ·0 K

ρin = ρAl = 2700
kg

m3
, ρout = ρCer = 5700

kg

m3

κ = 9.9× 10−56 , ζ = 5.4 , q = 0.5

Also boundary conditions were considered as Eq. (19)
and Eq. (31). To maintain generality and accuracy of
examination, the results were normalized. For this rea-
son, radial and tangential strains and also their rates
were normalized by means of ρCerw

2R2
o/ECer.

3.1.4. Evaluation of the Creep Results of FGM
Cylinder in Different Powers

In this case, the values of 0.2, 0.5, 1.5 and 2 were con-
sidered as the power of ingredient variation function, n,
then its influence was studied on the steady-state creep
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behavior of FG rotary cylinder. The specifications of
desired cylinder are given below:

Ri = 10cm, Ro = 25cm, ∆Ti = 5000C

∆To = 7000C, w = 150000rpm

Figs. 6 and 7 show radial and tangential normal-
ized strain distribution curves in radial direction of the
cylinder equal to 10.88 hours after the start of creep
for different power, n, also pure metal/ceramic base
are shown too. In both figures by increasing n, the
variation range of related strains in the radial direc-
tion increases that can be explained by increasing n;
the cylinder properties approach to the properties of a
pure metal base cylinder, which has a smaller modulus
of elasticity.

Fig. 6. Dimensionless radial strain distributions in ra-
dius direction of cylinder for different powers n.
Ω = ϵrECer/ρCerw

2R2
o

Fig. 7. Dimensionless tangential strain distributions
in radius direction of cylinder for different powers n.
Ω = ϵθECer/ρCerw

2R2
o

According to Fig. 6, in areas close to the inner and
outer cylinder surfaces, the radial strain approaches
zero with positive values then to negative values by
growing n, however in the middle areas of the cylin-
der the amount of radial strains increase in positive

direction by increasing n. It is obvious in Fig. 7 that
tangential strains increase by n in positive direction in
the whole cylinder.

3.1.5. Study of Temperature Effect on the FGM
Rotary Cylinder Creep

For the investigation of temperature effect on the FGM
rotary cylinder creep, a cylinder with the following
specifications was considered which was subjected to
different temperature gradients.

Ri = 10cm, Ro = 30cm, n = 1.5, w = 12000rpm

In Figs. 8-11 dimensionless radial and tangential strain
distributions are shown in radius direction of cylinder
after 10.88 hours from creep start for five different ther-
mal gradients. Fig. 8 shows that increasing in temper-
ature gradient causes rise of radial strain in areas near
the inner surface of the cylinder, in negative direction,
in the middle, and in positive direction, but descend-
ing radial strain in areas near the outer surface of the
cylinder.

Fig. 8. Dimensionless radial strain distributions in ra-
dius direction of cylinder for different gradients.
Ω = ϵrECer/ρCerw

2R2
o

Fig. 9. Dimensionless tangential strain distributions
in radius direction of cylinder for different gradients.
Ω = ϵθECer/ρCerw

2R2
o
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Fig. 10. Dimensionless radial strain rate distributions
in radius direction of cylinder for different gradients.
Ω = ϵ̇rECer/ρCerw

2R2
o

Fig. 11. Dimensionless tangential strain rate distri-
bution in radius direction of cylinder for different gra-
dients. Ω = ϵ̇θECer/ρCerw

2R2
o

According to Fig.9, it is observed that increase in
thermal gradient causes tangential strain rise in the
whole cylinder. Fig.10 shows that the absolute values
of radial strain rates will increase by thermal gradient.
Notice this growth of radial strain rate is not related to
linear thermal gradient increment. Also by increasing
thermal gradient, amount of tangential strain rate will
grow in the whole cylinder, in positive direction (Fig.
11).

3.1.6. Study of Creep Stress and Strain Rates
on the FGM Cylinder

In this case, aluminum and zirconium used as metal
and ceramic for the inner and outer surfaces of the
cylinder respectively. The material properties applied
in numerical calculations are as follows:

αin = αAl = 2.3× 10−5 1
0K

,

αout = αCer = 1× 10−5 1
0K

Ein = EAl = 70Gpa, Eout = ECer = 151Gpa

νin = νAl = 0.33, νout = νCer = 0.31

Kin = KAl = 209
j

kg ·0 K
, Kout = KCer = 2

j

kg ·0 K

ρin = ρAl = 2700
kg

m3
, ρout = ρCer = 5700

kg

m3

κ = 9.9× 10−56 , ζ = 5.4 , q = 0.5

The boundary conditions are:

urr at r = Ri u̇rr = 0 at = r = Ri

σrr = 0 at r = Ro σ̇rr = 0 at = r = Ro

The inner radius is 20cm and the outer radius is 50cm
which their corresponding surface temperatures at 100
and 300 degrees on the Celsius scale respectively, and
it rotates with a 3000 rpm angular velocity. It is as-
sumed that all parameters change will vary in radial
direction based on the power law distribution model,
using volumetric proportion with variation power 1.5.
Figs. 14 and 15 show radial and tangential stress and
strain rate distribution curves versus time in three, in-
ner, middle and outer layers. As it can be seen, the
outer and inner layers have maximum and minimum
stress rates (for both stress rates), for all time respec-
tively. Also, stress rate approaches zero by increasing
creep time which occurs from large quantities to zero
rather fast and sharply.

Fig. 12. Radial strain rate distribution curve of creep
versus time.

The stress and strain rates, for disc and cylinder
made of purposive materials, when creep starts, ap-
proach fast from large to small values. This behavior
implies that large values of stress and strain rates in the
beginning of creep which are considered by some ref-
erences could not be an appropriate criterion for creep
analysis of rotary disc and cylinder.
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Fig. 13. Tangential strain rate distribution curve of
creep versus time.

Fig. 14. Radial stress rate distribution curve versus
creep time Ω = σ̇r.

Fig. 15. Tangential stress rate distribution curve ver-
sus creep time Ω = σ̇.

Description of the application of the obtained re-
sults:

By increasing dimensionless radius ratio, variation
of dimensionless strain for different values of FGM ma-
terial power and temperature will be converged an-
swers. Increase for different values of FGM material
power is reduced ceramic material property and is in-

creased metal properties, as a result, is reduced elas-
ticity modulus and increased strain variations.

4. Conclusions

In the study the following conclusions were drawn:

1. By increasing n, the variation range of re-
lated radial strain rises since the increase in n
the cylinder properties approach the metal base
properties-which has smaller elasticity modulus.

2. By increasing n, radial strain changes from pos-
itive values to zero and then to negative values
while radial strain values in the middle areas of
the cylinder increase in positive direction by n.
Also tangential strain will increase in positive di-
rection by growing n.

3. Increasing thermal gradient of the cylinder in ar-
eas near the inner surface of the cylinder causes
radial strain growth in negative direction. Radial
strain decreases in areas near the outer surface,
and radial strain increases in the middle areas in
positive direction.

4. Increasing thermal gradient causes rise in tan-
gential strain and absolute radial strain rate in
the whole cylinder. Notice that this rise in radial
strain rate values is not related to linear thermal
gradient increases. Also tangential strain rate in-
creases in the whole cylinder in the positive di-
rection by n.

5. The outer and middle layers always (for both
strain rates) have maximum and minimum strain
rate respectively. Also strain rate approaches
zero over creep time that it happens fast.

6. The stress and strain rates, for disc and cylin-
der made of FGM materials, approach rapidly
a steady-state value when creep starts. This
behavior implies that large values of stress and
strain rates in the beginning of creep which are
considered by some references could not be an
appropriate criterion for creep analysis of rotary
disc and cylinder.

7. Steady-state creep behavior of FGM rotary cylin-
der strongly depends on the power of variation
function. So the power of variation function has
an important role in indicating response for de-
sign optimization of the cylinder.

8. The FGM rotary cylinder with a power of varia-
tion function less than one has a more appropri-
ate creep behavior.

9. The creep strain rates of the FGM rotary cylin-
der increase sharply by growing thermal gradi-
ent. This strong effect of thermal gradient on the
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creep behavior of the cylinder indicates the im-
portance of considering exact temperature simi-
lar to cylinder working condition in creep behav-
ior analysis of the rotary cylinder.

10. The important effect of considering variable ther-
modynamic properties of the cylinder in radial
direction indicates the necessity for accurate in-
vestigation of creep behavior of the rotary cylin-
der.

11. Different creep behavior of rotary cylinder made
of specific materials in different boundary condi-
tions indicates the need to be accurately based
on selecting appropriate boundary conditions.
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