
تعداد نشریات | 22 |
تعداد شمارهها | 485 |
تعداد مقالات | 5,045 |
تعداد مشاهده مقاله | 9,290,885 |
تعداد دریافت فایل اصل مقاله | 6,135,354 |
ارائه ی یک مدل موجودی برای خرابی غیر آنی کالا در یک زنجیره تامین دوسطحی | ||
نشریه پژوهش های مهندسی صنایع در سیستم های تولید | ||
مقاله 6، دوره 4، شماره 8، اسفند 1395، صفحه 165-179 اصل مقاله (1.45 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22084/ier.2017.1711 | ||
نویسندگان | ||
جواد رضائیان* 1؛ مقدسه اکبرپور2؛ حدیثه اکبرپور3 | ||
1استادیار، دانشکده مهندسی صنایع، دانشگاه علوم و فنون مازندران، مازندران | ||
2کارشناسی ارشد، دانشکده مهندسی صنایع، دانشگاه علوم و فنون مازندران، مازندران | ||
3کارشناسی ارشد، دانشکده مهندسی صنایع، دانشگاه پردیسان فریدونکنار، مازندران | ||
چکیده | ||
در این تحقیق یک مدل ریاضی برای زنجیرهتامین دوسطحی متشکل از یک خریدار و یک تولیدکننده برای یک سیستم یکپارچه موجودی با خرابی غیر آنی اقلام ارائه میشود که تقاضا احتمالی است و از توزیع نرمال پیروی میکند. فرض میشود خرابی از توزیع وایبول سه پارامتر پیروی میکند. در شرایط واقعی در نظر گرفتن کمبود هم بهصورت پسافت و هم بهصورت فروش از دسترفته الزامی است، بنابراین هر دو نوع کمبود نیز در مدل بکار گرفته میشود. هدف از این مدل تعیین سیاست بهینه سفارش دهی است بطوریکه مجموع هزینههای زنجیرهتامین کمینه گردد. برای حل مدل از الگوریتم ژنتیک بهره برده شده است. همچنین جهت تحلیل مدل و بررسی تأثیر برخی از پارامترهای مهم و تأثیرگذار بر جواب بهینه مدل موجودی از تحلیل حساسیت نرخ خرابی و سطح اطمینان استفاده مینماییم. در نهایت مقدار بهینه هزینه مورد انتظار زنجیرهتامین تحت تصمیمگیری یکپارچه و غیر یکپارچه تعیین و مقایسه میگردد. | ||
کلیدواژهها | ||
زنجیره تامین چندسطحی؛ خرابی غیرآنی؛ مدل موجودی | ||
مراجع | ||
[1] Guillena, G., Mele, F., Bagajewicz, M., Espuna, A., Puigjaner, L., (2005). “Multiobjective supply chain design under uncertainty”, Chemical Engineering Science, 60: 1535-1553. [2] Giannoccaro, I., Pontrandolfo, P., Scozzi, B., (2003). “A fuzzy echelon approach for inventory management in supply chains”, European Journal of Operational Research, 149: 185-196. [3] Goyal, S. K., Gupta, Y. P., (1989). “Integrated inventory models: the buyer-vendor coordination”, European Journal of Operational Research, 41: 261-269. [4] Huang, G.Q., Lau, J.S.K., Mak, K.L., (2003). “The impacts of sharing production information on supply chain dynamics: a review of the literature,” International Journal of Production Research, 41: 1483-1517. [5] Whitin, T.M., (1953). “The Theory of Inventory Management”, Princeton University Press, Princeton, NJ, USA, 62-72. [6] Ghare, P.M., Schrader, S.F., (1963). “A model for exponentially decaying inventory”, Journal of Industrial Engineering, 14: 238-243. [7] Covert, R.P., Philip, G.C., (1973). “An EOQ model for items with weibull distribution deterioration”, AIIE Transactions, 5: 323-326. [8] Goyal, S.K., Giri, B.C., (2001). “Recent trends in modeling of deteriorating inventory”, European Journal of Operational Research, 134: 1-16. [9] Mahata, G. C., (2012). “An EPQ-based inventory model for exponentially deteriorating items under retailer partial trade credit policy in supply chain”, Expert Systems with Applications, 39: 3537-3550. [10] Wu, K.SH., Oyang, L.Y., Yang, CH.T., (2006). “An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging”, Production Economics, 101: 369-384. [11] Geetha, K.V., Uthayakumar, R., (2010). “Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments”, Journal of Computational and Applied Mathematics, 233: 2492-2505. [12] Shah, N.H., Soni, H.N., Patel, K.A., (2013). “Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates”, Omega, 41: 421–430. [13] Maihami, R., Karimi, B., (2014). “Optimizing the pricing and replenishment policy for non-instantaneous deteriorating items with stochastic demand and promotional efforts”, Computers & Operations Research, 51: 302-312. [14] Abad, P.L., (1996). “Optimal pricing and lot-sizing under conditions of perishability and partial backordering”, Management Science, 42: 1093-1197. [15] Abad, P.L., (2001). “Optimal price and order size for a reseller under partial backordering”, Computers & Operations Research, 28: 53-65. [16] Pentico, D.W., Drake, M.J., (2011). “A survey of deterministic models for the EOQ and EPQ with partial backordering”, European Journal of Operational Research, 214: 179-198. [17] Clark, A.J., Scarf, H., (1960). “Optimal policies for a multi-echelon inventory problem”, Management Science, 6: 475-490. [18] Taleizadeh, A.A., Niaki, S.T.A., Makui, A., (2012). “Multiproduct multiple-buyer single-vendor supply chain problem with stochastic demand, variable lead-time, and multi-chance constraint”, Expert Systems with Applications, 39: 5338–5348. [19] Yanga, P.CH., Weeb, H.M., (2003). “An integrated multi-lot-size production inventory model for deteriorating item”, Computers & Operations Research, 30: 671-682. [20] Bakker, M., Riezebos, J., Teunter, R.H., (2012). “Review of inventory systems with deterioration since 2001”, European Journal of Operational Research, 221: 275-284. [21] Rau, H., Wu, M.Y., Wee, H.M., (2003). “Integrated inventory model for deteriorating items under a multi-echelon supply chain environment”, International Journal of Production Economics, 86: 155-168. [22] Tiwari, S., Cardenas-Barron, L., Khanna, A., .Jaggi, C., (2016). “Impact of trade credit and inflation on retailer's ordering policies for non-instantaneous deteriorating items in a two-warehouse environment”, International Journal of Production Economics 176: 154-169. [23] Rabbani, M., Pourmohammad Zia, N., Rafiei, H., (2016). “Joint optimal dynamic pricing and replenishment policies for items with simultaneous quality and physical quantity deterioration”, Applied Mathematics and Computation, 149-160. [24] Guchhait, P., Maiti, M.K., Maiti,M., (2015). “An EOQ model of deteriorating item in imprecise environment with dynamic deterioration and credit linked demand”, Applied Mathematical Modelling, 1-15. [25] Jaggi, C., Tiwari, S., Shafi, A., (2015). “Effect of deterioration on two-warehouse inventory model with imperfect quality”, Computers & Industrial Engineering 88: 378-385. [26] Das, B.C., Dasb, B., Mondal, S., (2015). “An integrated production inventory model under interactive fuzzy credit period for deteriorating item with several markets”, Applied Soft Computing 28: 453-465. [27] Philip, G.C., (1974). “A generalized EOQ model for items with Weibull distribution deterioration”, AIIE Transactions, 6: 159-162. [28] Spiegel, M.R., “Applied differential equations, Englewood Cliffs”, N.J.: Prentice-Hall, 1960. [29] Wang, K.J., Lin, Y.S., Jonas, C.P., (2011). “Optimizing inventory policy for products with time-sensitive deteriorating rates in a multi-echelon supply chain”, Production Economics, 130: 66-67. [30] Wu, K.SH., Oyang, L.Y., Yang, CH.T., (2006). “An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging”, Production Economics, 101: 369-384. [31] Annadurai, K., Uthayakumar, R., (2013). “Two-echelon inventory model for deteriorating items with credit period dependent demand including shortages under trade credit”, Optim. Lett, 7: 1227-1249. [32] Valliathal, M., Uthayakumar, R., (2011). “Optimal pricing and replenishment policies of an EOQ model for non-instantaneous deteriorating items with shortages” The International Journal of Advanced Manufacturing Technology, 54: 361-371. [33] Yanga, P.CH., Weeb, H.M., (2003). “An integrated multi-lot-size production inventory model for deteriorating item”, Computers & Operations Research, 30: 671-682. [34] Lo, SH.T., Wee, H.M., Huang, W.CH., (2007). “An integrated production-inventory model with imperfect production processes and Weibull distribution deterioration under inflation”, International Journal Production Economics, 106: 248-260. [35] Nurani, A. (2001). “Designing cellular production system in conditions of probabilistic dynamic demand and solving it by simulation annealing and comparing with the optimum value”, Science and technology university of Mazandaran. [36] Goldberg, D.E., (1989). “Genetic algorithms for search, Optimization and Machine Learning”, Reading, MA: Addingwesley. [37] Rudelph, G., (1994), “Convergence analysis of canonical genetic algorithms”, IEEE Transactions on Neural Network, 5: 96-101. [38] Vose, M.D., (1999). “Simple genetic algorithm: Foundation and Theory”, Ann Arbor, MI: MIT press. [39] Augusto, O.B., Rabeau, S., Depince, Ph., Bennis, F., (2006). “Multi-objective genetic algorithms: A way to improve the convergence rate”, Engineering Applications of Artificial Intelligence, 19: 501-510. [40] Yu, J.C.P., Wee, H.M., Wang, K.J, (2008). “An integrated three-echelon supply chain model for a deteriorating items via simulated annealing method”, Proceeding of the Seventh International Conference on Machine Learning and Cybemetics. | ||
آمار تعداد مشاهده مقاله: 1,256 تعداد دریافت فایل اصل مقاله: 1,242 |