
تعداد نشریات | 22 |
تعداد شمارهها | 485 |
تعداد مقالات | 5,045 |
تعداد مشاهده مقاله | 9,290,934 |
تعداد دریافت فایل اصل مقاله | 6,135,376 |
شیمی آمفیبولهای آنکلاوها و دایک های توده نفوذی زرگلی، شمال غرب زاهدان | ||
یافتههای نوین زمینشناسی کاربردی | ||
مقاله 2، دوره 10، شماره 20، آذر 1395، صفحه 9-22 اصل مقاله (806.9 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22084/nfag.2017.1689 | ||
نویسندگان | ||
مهدی سراوانی فیروز* 1؛ علی کنعانیان1؛ مهدی رضایی کهخایی2 | ||
1دانشکده زمینشناسی، پردیس علوم، دانشگاه تهران، تهران | ||
2دانشکده علوم زمین ، دانشگاه شاهرود، شاهرود | ||
چکیده | ||
تودهی نفوذی زرگلی در شمال غرب شهرستان زاهدان و در امتداد نوار گرانیتوئیدی زاهدان – سراوان قرار دارد. لیتولوژی اصلی سازنده این توده، سنگهای گرانودیوریتی از نوع I بوده و ماهیت ماگمای سازندهشان یک ماگمای گرانیتی کالکآلکالن میباشد که در یک محیط فرورانشی کوهزایی تشکیل شده و تا حدی با سنگهای رسوبی پوسته فوقانی آلایش یافته است. ویژگی قابل توجه در مورد این گرانودیوریتها، حضور فراوان آنکلاوهای متاسدیمنتری در آنها میباشد. کانی آمفیبول در سنگهای گرانیتوئیدی توده نفوذی زرگلی وجود ندارد اما در آنکلاوهای متاسدیمنتری و دایکهای دیوریتی موجود در این توده به عنوان کانی مافیک اصلی مشاهده میشود. آمفیبولهای آنالیز شده از دایکهای دیوریتی و آنکلاوهای متاسدیمنتری توده زرگلی به ترتیب از نوع چرماکیت و منیزیوهورنبلند هستند که گاهاً به اکتینولیت تجزیه شده اند. آمفیبولهای دایکهای دیوریتی در فشار و دمای بالاتری نسبت به آمفیبولهای آنکلاوهای متاسدیمنتری تشکیل شدهاند. آمفیبولهای آنالیز شده از آنکلاو متاسدیمنتری در دمای 770 درجه سانتیگراد و فشار حدوداً 2 کیلوبار متبلور شده اند در حالی که آمفیبولهای آنالیز شده از دایکهای دیوریتی در محدوده دمایی 750 تا 775 درجه سانتیگرادی و فشار نسبتاً گسترده 4 تا 7 کیلوبار تشکیل شدهاند. فشار محاسبه شده برای آمفیبولهای آنالیز شده از آنکلاو متاسدیمنتری نشان دهنده فشار جایگیری توده نفوذی است، پس توده نفوذی زرگلی احتمالاً در فشار حدوداً 2 کیلوبار که متناسب با عمق 7 کیلومتری است. | ||
کلیدواژهها | ||
شیمی آمفیبول؛ ژئوترموبارومتری؛ آنکلاو؛ زرگلی؛ زاهدان | ||
مراجع | ||
منابع [1] کشتگر، ش (1383) پترولوژی، ژئوشیمی و تحلیل ساختاری گرانیتهای زرگلی (شمالغرب زاهدان)، پایان نامه کارشناسیارشد، دانشگاه تهران، 161 ص. [2] معینوزیری، ح و احمدی، ع (1380) پتروگرافی و پترولوژی سنگهای آذرین، انتشارات دانشگاه تربیت معلم، 547 ص. [3] Anderson, J. L. and Smith, D. R (1995) The effects of temperature and ƒO2 on the Al-in-hornblende barometer. American Mineralogist, 80 : 549-559.
[4] Anderson, J. L (1997) Status of thermobarometry in granitic batholiths. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87 : 125-138.
[5] Blundy, J. D., Holland T. J. B (1990) Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contribution toMineralogy and Petrology, 104 : 208-224.
[6] Brown, E. H (1977) The crossite content of Ca-amphiboles as a guide to pressure of metamorphism, in Moazzen M. and Droop G. T. R., 2005: Application of thermometers and barometers to granitoid igneous rocks: the Etive Complex, W Scatland. Mineralogy and Petrology, 83 : 27-53.
[7] Femenias, O., Mercier J. C. C., Nkono C., Diot H., Berza T., Tatu M., and Demaiffe D (2006) Calcic amphibole growth and compositions in calc-alkaline magmas: Evidence from the Motru Dike Swarm (Southern Carpathians, Romania). American Mineralogist, 91 : 73-81.
[8] Hammarstrom, J. M., Zen E (1986) Aluminum in hornblende: An empirical igneous geobarometer. American Mineralogist, 71 : 1297-1313.
[9] Holland T., Blundy J (1994) Non-ideal interaction in calcic amphiboles and their bearing on amphibole-plagioclase thermometery, Contributions toMineralogy and Petrology, 116 : 443-447.
[10] Hollister, L. S., Grissom G. C., Peters E. K., Stowell H. H. and Sisson V. B (1987) Confirmation of the empirical correlation of Al in hornblende with product of solidification in calc-alkaline plutons, in Jarrar G., 1998: Mineral chemistry in dioritic hornblendites from Wadi Araba, southwest Jordan. Journal of African Earth Sciences, 26 : 285-295.
[11] Ishihara, S (1977) The magnetite-series and ilmenite-series granitic rocks, in Anderson J. L. and Smith D. R., 1995: The effects of temperature and ƒO2 on the Al-in-hornblende barometer. American Mineralogist, 80 : 549-559.
[12] Johnson, M. C. and Rutherford M. J (1989) Experimental calibration of the Al-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks, in Jarrar G., 1998: Mineral chemistry in dioritic hornblendites from Wadi Araba, southwest Jordan. Journal of African Earth Sciences, 26 : 285-295.
[13] Leake, B. E., Woolley A. R., Arps C. E. S., Birch W. D., Gilbert M. C., Grice J. D., Hawthorne F. C., Kato A., Kisch H. J., Krivovichev V. G., Linthout K., Laird J., Mandarino J., Maresch W. V., Nickel E. H., Schumacher J. C., Smith D. C., Stephenson N. C. N., Ungaretti L., Whittaker E. J. W., Youzhi G (1997) Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61 : 295-321.
[14] Moazzen, M. and Droop G. T. R (2005) Application of thermometers and barometers to granitoid igneous rocks: the Etive Complex, W Scatland. Mineralogy and Petrology, 83 : 27-53.
[15] Rezaei-Kahkhaei, M., Kananian A., Esmaeily D. and Asiabanha A (2010) Geochemistry of the Zargoli granite: Implications for development of the Sistan Suture Zone, southeastern Iran. Island Arc, 19 : 18 pages.
[16] Scaillet, B. and Macdonald R (2003) Experimental constraints on the relationships between peralkaline rhyolites of the Kenya rift valley, in Shellnutt J. G. and Iizuka Y., 2011: Mineralogy from three peralkaline granitic plutons of the Late Permian Emeishan large igneous province (SW China): evidence for contrasting magmatic condition of A-type granitoids. Eur. J. Mineral., 23 : 45-61.
[17] Schmidt, M. W (1992) Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer, in Jarrar G., 1998: Mineral chemistry in dioritic hornblendites from Wadi Araba, southwest Jordan. Journal of African Earth Sciences, 26 : 285-295.
[18] Spear, F. S (1981) Amphibole-plagioclase equilibria: an empirical model for the reaction albite + tremolite = edenite + 4 quartz, in Stein E. and Dietl C. 2001: Hornblende thermobarometery of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald. Mineralogy and Petrology, 72 : 185-207.
[19] Stein, E. and Dietl C (2001) Hornblende thermobarometery of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald. Mineralogy and Petrology, 72 : 185-207.
[20] Wones, D. R (1989) Significance of the assemblage titanite + magnetite + quartz in granitic rocks, in Shellnutt J. G. and Iizuka Y., 2011: Mineralogy from three peralkaline granitic plutons of the Late Permian Emeishan large igneous province (SW China): evidence for contrasting magmatic condition of A-type granitoids. Eur. J. Mineral., 23 : 45-61.
[21] Yang, X. M., Lentz D. R (2005) Chemical composition of rock-forming minerals in gold-related granitoid intrusions, southwestern New Brunswick, Canada: implications for crystallization conditions, volatile exsolution, and fluorine-chlorine activity. Contrib Mineral Petrol, 150 : 287-305. | ||
آمار تعداد مشاهده مقاله: 1,417 تعداد دریافت فایل اصل مقاله: 1,055 |